Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum secret sharing with quantum graph states

Liang Jian-Wu Cheng Zi Shi Jin-Jing Guo Ying

Citation:

Quantum secret sharing with quantum graph states

Liang Jian-Wu, Cheng Zi, Shi Jin-Jing, Guo Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum secret sharing is an important way to achieve secure communications, which has critical applications in the field of information security for its physical properties. According to the perspective of the practical applications, improving the confidentiality and integrity of secret sharing schemes is a good method to increase the security and reliability of communications. In this paper, we propose a quantum secret sharing scheme based on generator matrix segmentation and the structural features of quantum graph states. The security of the secure secret sharing scheme is guaranteed by the pattern of transferring information by stabilizers, scalability of the information and new recovery strategy provided by the entanglement of the related graph states. It puts forward an effective solution to the problem of matrix cycle period, where some numbers without the primitive element cannot construct the generation matrix. First of all, the physical properties of quantum bits (qubits), such as uncertainty principle, no-cloning theorem and indistinguishability, not only optimize the classical schemes but also ensure the absolute safety of communication. Secondly, the application of matrix segmentation makes secret information has better scalability. It improves the coding diversity and the difficulty in deciphering. Thirdly, the favorable entanglement properties and mature experiment preparation techniques of graph states provide an approach to the practical applications. The superiority of the yielded graph states is described in graphical fashion with an elegant stabilizer. Fourthly, the shuffling operation can ensure the independence of the message among participants. Therefore, Eve can not obtain any useful information by measuring randomly. Two group-recovery protocols are proposed to show the secret recovering processing through rebuilding sub-secrets among legal cooperative participants. In the scheme design, the dealer extracts the classical secret information according to the corresponding principle between the classical and quantum information, and divides the classical secret through generated matrix which is produced with the primitive elements in finite domain satisfying the linear independence for any k column vectors. Then the dealer encodes information into graph states and distributes particles to the legal participants with unitary operations. Subsequently, the credible center obtains sub-secrets by the theory of graph states and the group recovery protocol. He can achieve the initial classical secret via the inverse algorithm of matrix segmentation. After getting the classical secret, he recovers quantum secret according to the relationship between classical information and quantum information. Theoretical analysis shows that this scheme can provide better security and scalability of the information. It is appropriate to realize the secret sharing in the quantum network communication to protect secrets from eavesdropping. Also, it can provide an approach to designing diverse and scalable quantum secure communication schemes based on quantum graph states, the algorithm of matrix segmentation, and group-recovery protocol.
      Corresponding author: Shi Jin-Jing, shijinjing@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61379153, 61401519, 61572529), the China Postdoctoral Science Foundation (Grant Nos. 2013M542119, 2014T70772), and the Science and Technology Planning Project of Hunan Province, China (Grant No. 2015RS4032).
    [1]

    Shamir A 1979 Commun. ACM 22 612

    [2]

    Feng L J, Zhang Y J, Zhang L, Xia Y J 2015 Chin. Phys. B 24 103

    [3]

    Zhou N R, Cheng H L, Tao X Y, Gong L H 2014 Quantum Inf. Process. 13 513

    [4]

    Tang S Q, Yuan J B, Wang X W, Kuang L M 2015 Chin. Phys. Lett. 32 040303

    [5]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 240

    [6]

    Sun W, Yin H L, Sun X X, Chen T Y 2016 Acta Phys. Sin. 65 080301 (in Chinese) [孙伟, 尹华磊, 孙祥祥, 陈腾云 2016 物理学报 65 080301]

    [7]

    Gong L H, Liu Y, Zhou N R 2013 Int. J. Theor. Phys. 52 3260

    [8]

    Guo Y, Zhao Y 2013 Quantum Inf. Process. 12 1125

    [9]

    Gao G 2014 Int. J. Theor. Phys. 53 2231

    [10]

    Li Y X, Wang X M 1993 J. Commun. 14 22 (in Chinese)[李元兴, 王新梅1993 通信学报14 22]

    [11]

    Mei T, Dai Q, Zhang M 2008 Commun. Tech. 11 288(in Chinese) [梅挺, 代群, 张明2008 通信技术11 288]

    [12]

    Song Y, Li Z H, Li Y M 2013 Acta Electr. Sin. 02 220(in Chinese) [宋云, 李志慧, 李永明2013 电子学报02 220]

    [13]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [14]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188

    [15]

    Looi S Y, Li Y, Gheorghiu V, Griffiths R B 2008 Phys. Rev. A 78 042303

    [16]

    Nielsen M A 2004 Phys. Rev. Lett. 93 040503

    [17]

    Kiesel N, Schmid C, Weber U, Tóth G, Ghne O, Ursin R, Weinfurter H 2005 Phys. Rev. Lett. 95 210502

    [18]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639

    [19]

    Keet A, Fortescue B, Markham D, Sander B C 2010 Phys. Rev. A 82 062315

    [20]

    Bartlett S D, de Guise H, Sanders B C 2002 Phys. Rev. A 65 052316

    [21]

    Markham D, Sanders B C 2008 Phys. Rev. A 78 042309

  • [1]

    Shamir A 1979 Commun. ACM 22 612

    [2]

    Feng L J, Zhang Y J, Zhang L, Xia Y J 2015 Chin. Phys. B 24 103

    [3]

    Zhou N R, Cheng H L, Tao X Y, Gong L H 2014 Quantum Inf. Process. 13 513

    [4]

    Tang S Q, Yuan J B, Wang X W, Kuang L M 2015 Chin. Phys. Lett. 32 040303

    [5]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scr. 89 240

    [6]

    Sun W, Yin H L, Sun X X, Chen T Y 2016 Acta Phys. Sin. 65 080301 (in Chinese) [孙伟, 尹华磊, 孙祥祥, 陈腾云 2016 物理学报 65 080301]

    [7]

    Gong L H, Liu Y, Zhou N R 2013 Int. J. Theor. Phys. 52 3260

    [8]

    Guo Y, Zhao Y 2013 Quantum Inf. Process. 12 1125

    [9]

    Gao G 2014 Int. J. Theor. Phys. 53 2231

    [10]

    Li Y X, Wang X M 1993 J. Commun. 14 22 (in Chinese)[李元兴, 王新梅1993 通信学报14 22]

    [11]

    Mei T, Dai Q, Zhang M 2008 Commun. Tech. 11 288(in Chinese) [梅挺, 代群, 张明2008 通信技术11 288]

    [12]

    Song Y, Li Z H, Li Y M 2013 Acta Electr. Sin. 02 220(in Chinese) [宋云, 李志慧, 李永明2013 电子学报02 220]

    [13]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [14]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188

    [15]

    Looi S Y, Li Y, Gheorghiu V, Griffiths R B 2008 Phys. Rev. A 78 042303

    [16]

    Nielsen M A 2004 Phys. Rev. Lett. 93 040503

    [17]

    Kiesel N, Schmid C, Weber U, Tóth G, Ghne O, Ursin R, Weinfurter H 2005 Phys. Rev. Lett. 95 210502

    [18]

    Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R, Wineland D J 2005 Nature 438 639

    [19]

    Keet A, Fortescue B, Markham D, Sander B C 2010 Phys. Rev. A 82 062315

    [20]

    Bartlett S D, de Guise H, Sanders B C 2002 Phys. Rev. A 65 052316

    [21]

    Markham D, Sanders B C 2008 Phys. Rev. A 78 042309

  • [1] Lai Hong, Wan Lin-Chun. Dynamic and scalable secret sharing schemes based on matrix product compressed states. Acta Physica Sinica, 2024, 73(18): 180302. doi: 10.7498/aps.73.20240191
    [2] Wu Xiao-Dong, Huang Duan. Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation. Acta Physica Sinica, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [3] Zhan Shao-Kang, Wang Jin-Dong, Dong Shuang, Huang Si-Ying, Hou Qing-Cheng, Mo Nai-Da, Mi Shang, Xiang Li-Bing, Zhao Tian-Ming, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Finite-key analysis of decoy model semi-quantum key distribution based on four-state protocol. Acta Physica Sinica, 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [4] Sun Tai-Ping, Wu Yu-Chun, Guo Guo-Ping. Quantum generative models for data generation. Acta Physica Sinica, 2021, 70(14): 140304. doi: 10.7498/aps.70.20210930
    [5] Zhai Shu-Qin, Kang Xiao-Lan, Liu Kui. Quantum steering based on cascaded four-wave mixing processes. Acta Physica Sinica, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [6] Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi. Collaborative quantum computation with redundant graph state. Acta Physica Sinica, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [7] Yang Ying, Cao Huai-Xin. General method of constructing entanglement witness. Acta Physica Sinica, 2018, 67(7): 070303. doi: 10.7498/aps.67.20172697
    [8] Fan Hong-Yi, Wu Ze. Statistical properties of binomial and negative-binomial combinational optical field state and its generation in quantum diffusion channel. Acta Physica Sinica, 2015, 64(8): 080303. doi: 10.7498/aps.64.080303
    [9] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [10] Sun Xin-Mei, Zha Xin-Wei, Qi Jian-Xia, Lan Qian. High-efficient quantum state sharing via non-maximally five-qubit cluster state. Acta Physica Sinica, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [11] Wei Ke-Jin, Ma Hai-Qiang, Wang Long. A quantum secret sharing scheme based on two polarization beam splitters. Acta Physica Sinica, 2013, 62(10): 104205. doi: 10.7498/aps.62.104205
    [12] Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation. Acta Physica Sinica, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [13] Zhou Xiao-Qing, Wu Yun-Wen. Broadcast and multicast in quantum teleportation internet. Acta Physica Sinica, 2012, 61(17): 170303. doi: 10.7498/aps.61.170303
    [14] Xu Jian, Chen Xiao-Yu, Li Hai-Tao. Determing the entanglement of quantum nonbinary graph states. Acta Physica Sinica, 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [15] Jiao Rong-Zhen, Zhang Wen-Han. Analysis of decoy state quantum-key-distribution system. Acta Physica Sinica, 2009, 58(4): 2189-2192. doi: 10.7498/aps.58.2189
    [16] Yi Zhi, He Guang-Qiang, Zeng Gui-Hua. Quantum voting protocol using two-mode squeezed states. Acta Physica Sinica, 2009, 58(5): 3166-3172. doi: 10.7498/aps.58.3166
    [17] Liu Yu-Ling, Man Zhong-Xiao, Xia Yun-Jie. Quantum secret sharing of an arbitrary two-particle entangled state via non-maximally entangled channels. Acta Physica Sinica, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [18] Sun Ying, Du Jian-Zhong, Qin Su-Juan, Wen Qiao-Yan, Zhu Fu-Chen. Quantum secret sharing with bidirectional authentication. Acta Physica Sinica, 2008, 57(8): 4689-4694. doi: 10.7498/aps.57.4689
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Single N-dimensional quNit quantum secret sharing. Acta Physica Sinica, 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
    [20] ZHOU YU-KUI, YUN GUO-HONG. A STUDY ON THE EIGENSTATES OF QUANTUM NONLINEAR SCHR?DINGER MODEL WITH GENERAL SUPERMATRICES. Acta Physica Sinica, 1989, 38(4): 648-652. doi: 10.7498/aps.38.648
Metrics
  • Abstract views:  8160
  • PDF Downloads:  488
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2016
  • Accepted Date:  17 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回