Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system

Hu Zhou Zeng Zhao-Yun Tang Jia Luo Xiao-Bing

Citation:

Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system

Hu Zhou, Zeng Zhao-Yun, Tang Jia, Luo Xiao-Bing
PDF
HTML
Get Citation
  • In recent years, there have been intensive studies of non-Hermitian physics and parity–time (PT) symmetry due to their fundamental importance in theory and outstanding applications. A distinctive character in PT-symmetric system is phase transition (spontaneous PT-symmetry breaking), i.e. an all-real energy spectrum changes into an all-complex one when the non-Hermitian parameter exceeds a certain threshold. However, the conditions for PT-symmetric system with real energy spectrum to occur are rather restrictive. The generalization of PT-symmetric potentials to wider classes of non-PT-symmetric complex potentials with all-real energy spectra is a currently important endeavor. A simple PT-symmetric two-level Floquet quantum system is now being actively explored, because it holds potential for the realization of non-unitary single-qubit quantum gate. However, studies of the evolution dynamics of non-PT-symmetric two-level non-Hermitian Floquet quantum system are still relatively rare.In this paper, we investigate the non-Hermitian physics of a periodically driven non-PT-symmetric two-level quantum system. By phase-space analysis, we find that there exist so-called pseudo fixed points in phase space representing the Floquet solutions with fixed population difference and a time-dependent relative phase between the two levels. According to these pseudo fixed points, we analytically construct a non-unitary evolution operator and then explore the dynamic behaviors of the non-PT-symmetric two-level quantum system in different parameter regions. We confirm both analytically and numerically that the two-level non-Hermitian Floquet quantum system, although it is non-parity-time-symmetric, still features a phase transition with the quasienergy spectrum changing from all-real to all-complex energy spectrum, just like the PT symmetric system. Furthermore, we reveal that a novel phenomenon called quasi-PT symmetric dynamics occurs in the time evolution process. The quasi-PT symmetric dynamics is so named in our paper, in the sense that the time-evolution of population probabilities in the non-PT-symmetric two-level system satisfies fully the time-space symmetry (PT symmetry), while time-evolution of the quantum state (containing the phase) does not meet such a PT symmetry, due to the fact that time-evolution of the phases of the probability amplitudes on the two levels violates the requirement for the PT symmetry.
      Corresponding author: Luo Xiao-Bing, xiaobingluo2013@aliyun.com
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY21A050002), the National Natural Science Foundation of China (Grant Nos. 11975110, 12164022), the Scientific and Technological Research Fund of Jiangxi Provincial Education Department (Grant No. GJJ211026), and Zhejiang Sci-Tech University Scientific Research Start-up Fund (Grant No. 20062318-Y).
    [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [3]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [4]

    Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N, Rotter S 2016 Nature 537 76Google Scholar

    [5]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G Lu, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [6]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [7]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173Google Scholar

    [8]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [9]

    Fleury R, Sounas D, Alù A 2015 Nat. Com. 6 5905

    [10]

    Liu T, Zhu X, Chen F, Liang S, Zhu J 2018 Phys. Rev. Lett. 120 124502Google Scholar

    [11]

    Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F, Guo G C 2016 Nat. Photonics 10 642Google Scholar

    [12]

    Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117Google Scholar

    [13]

    Gao W C, Zheng C, Liu L, Wang T J, Wang C 2021 Optics Express 29 517Google Scholar

    [14]

    Li J, Harter A K, Liu J, Melo L de, Joglekar Y N, Luo L 2019 Nat. Com. 10 855Google Scholar

    [15]

    Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Com. 8 1368Google Scholar

    [16]

    沈瑞昌, 张国强, 王逸璞, 游建强 2019 物理学报 68 230305Google Scholar

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305Google Scholar

    [17]

    Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X, Dun J 2019 Science 364 878Google Scholar

    [18]

    Zheng C, Hao L, Long G L 2013 Philos. Trans. R. Soc. A 371 20120053Google Scholar

    [19]

    Wen J, Zheng C, Kong X, Wei S, Xin T, Long G 2019 Phys. Rev. A 99 062122Google Scholar

    [20]

    Wang W C, Zhou Y L, Zhang H L, Zhang J, Zhang M C, Xie Y, Wu C W, Chen T, Ou B Q, Wu W, Jing H, Chen P X 2021 Phys. Rev. A 103 L020201Google Scholar

    [21]

    Ding L, Shi K, Zhang Q, Shen D, Zhang X, Zhang W 2021 Phys. Rev. Lett. 126 083604Google Scholar

    [22]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [23]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [24]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [25]

    Sun Y, Tan W, Li H Q, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [26]

    Jin L, Song Z 2018 Phys. Rev. Lett. 121 073901Google Scholar

    [27]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187Google Scholar

    [28]

    Yu S, Meng Y, Tang J, Xu X, Wang Y, Yin P, Ke Z, Liu W, Li Z, Yang Y, Chen G, Han Y, Li C, Guo G 2020 Phys. Rev. Lett. 125 240506Google Scholar

    [29]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [30]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [31]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [32]

    Xu H, Mason D, Jiang L, Harris J G E 2016 Nature 537 80Google Scholar

    [33]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401

    [34]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [35]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [36]

    Mostafazadeh A 2002 J. Math. Phys. 43 2814Google Scholar

    [37]

    黄永峰, 曹怀信, 王文华 2020 物理学报 69 030301Google Scholar

    Huang Y F, Cao H X, Wang W H 2020 Acta Phys. Sin. 69 030301Google Scholar

    [38]

    Nixon S, Yang J 2016 Phys. Rev. A 93 031802(R)

    [39]

    Hang C, Gabadadze G, Huang G 2017 Phys. Rev. A 95 023833Google Scholar

    [40]

    Pan J, Zhou L 2020 Phys. Rev. B 102 094305Google Scholar

    [41]

    Luo X B, Huang J H, Zhong H H, Qin X Z, Xie Q T, Kivshar Y S, Lee C H 2013 Phys. Rev. Lett. 110 243902Google Scholar

    [42]

    Chitsazi M, Li H, Ellis F M, Kottos T 2017 Phys. Rev. Lett. 119 093901Google Scholar

    [43]

    Duan L, Wang Y, Chen Q 2020 Chin. Phys. Lett. 37 081101Google Scholar

    [44]

    Xie Q, Rong S, Liu X 2018 Phys. Rev. A 98 052122Google Scholar

    [45]

    Koutserimpas T T, Alù A, Fleury R 2018 Phys. Rev. A 97 013839Google Scholar

    [46]

    Luo X B, Wu D, Luo S, Guo Y, Yu X, Hu Q 2014 J. Phys. A:Math. Theor 47 345301Google Scholar

    [47]

    Yang B, Luo X B, Hu Q, Yu X 2016 Phys. Rev. A 94 043828Google Scholar

    [48]

    Luo X B, Yang B, Zhang X F, Li L, Yu X 2017 Phys. Rev. A 95 052128Google Scholar

    [49]

    Cui B, Wang L C, Yi X X 2010 Phys. Rev. A 82 062105

    [50]

    Liu Z P, Zhang J, Özdemir Ş K, Peng B, Jing H, Lu X Y, Li C W, Yang L, Nori F, Liu Y 2016 Phys. Rev. Lett. 117 110802Google Scholar

    [51]

    Bender C M, Brody D C, Jones H F, Meister B K 2007 Phys. Rev. Lett. 98 040403Google Scholar

  • 图 1  不同系统参数下的相空间轨道($ \omega = 2, \nu = 1 $) (a) ${\gamma _0} = $$ 1,\; {\gamma _1} = 0.5$; (b) ${\gamma _0} = 1,\; {\gamma _1} = 1$; (c) ${\gamma _0} = 1, \;{\gamma _1} = 2$; (d) ${\gamma _0} = 2,\; {\gamma _1} = 0.5$

    Figure 1.  Phase-space trajectories with different system parameters($ \omega = 2, \nu = 1 $): (a) ${\gamma _0} = 1,\; {\gamma _1} = 0.5$; (b) ${\gamma _0} = 1, $$ \;{\gamma _1} = 1$; (c) ${\gamma _0} = 1, \;{\gamma _1} = 2$; (d) ${\gamma _0} = 2,\; {\gamma _1} = 0.5$.

    图 2  非厄米系统(1)在周期驱动(7)作用下共振($2{\gamma _0} = $$ \omega$)情况时的准能谱的实部(a)和虚部(b)随参数${\gamma _1}/\nu $的关系. 红线和蓝线代表直接对角化一个驱动周期的时间演化算符的数值结果, 圆圈代表经典相图中赝定点对应的准能量解析结果. 参数取为${\gamma _0} = 1,\; \omega = 2$

    Figure 2.  Real (a) and imaginary (b) parts of the quasienergies as a function of ${\gamma _1}/\nu $ for the non-Hermitian system (1) subject to a periodic modulation (7) in the resonant ($2{\gamma _0} = $$ \omega$) case. The red and blue lines denote the numerical results of quasienergies computed through direct diagonalization of the time-evolution operator over one period of the driving, while the circles denote exact analytical results of quasienergies corresponding to the pseudo fixed points in phase space. The system parameters are set as ${\gamma _0} = 1, \;\omega = 2$

    图 3  在共振情况下的系统动力学($\tfrac{{{\gamma _1}}}{\nu } < 1$) (a) 两能级上的占有概率${\left| {{\psi _n}} \right|^2}$($n = 1, 2$)随时间演化; (b)相位${\theta _n}$($n = $$ 1, 2$)随时间演化; (c)以$ {t_0} = - 0.605 $为时间反演点的$ {\theta _1}({t_0} + t) + {\theta _2}({t_0} - t) $演化. 系统参数取为${\gamma _0} = 1, \;{\gamma _1} = 0.5,\; $$ \omega = 2,\; \nu = 1$ 初态为${\psi _1}(0) = 1, {\psi _2}(0) = 0$

    Figure 3.  System dynamics for the resonance case with the non-Hermitian parameters $\tfrac{{{\gamma _1}}}{\nu } < 1$, starting the system with the state ${\psi _1}(0) = 1,\; {\psi _2}(0) = 0$: (a) Time evolutions of the occupation probabilities ${\left| {{\psi _1}} \right|^2}$ and ${\left| {{\psi _2}} \right|^2}$; (b) time evolutions of phases ${\theta _1}(t)$ and ${\theta _2}(t)$; (c) time evolution of the sum of phases, $ {\theta _1}({t_0} + t) + {\theta _2}({t_0} - t) $. Here we choose the time-inversion point $ {t_0} = - 0.605 $. The system parameters are ${\gamma _0} = 1,\; {\gamma _1} = 0.5,\; \omega = 2, \;\nu = 1$.

    图 4  在共振情况下的系统动力学(${{{\gamma _1}}}/{\nu } = 1$) (a) 两能级上的占有概率${\left| {{\psi _n}} \right|^2}$($n = 1, 2$)随时间演化;(b)相位${\theta _n}$($n = $$ 1, 2$)随时间演化; (c)以$ {t_0} = - 0.5 $为时间反演点的$ {\theta _1}({t_0} + t) + {\theta _2}({t_0} - t) $演化. 系统参数取为${\gamma _0} = 1,\; {\gamma _1} = 1,\; $$ \omega = 2,\; \nu = 1$ 初态为${\psi _1}(0) = 1,\; {\psi _2}(0) = 0$

    Figure 4.  System dynamics for the resonance case with the non-Hermitian parameters ${{{\gamma _1}}}/{\nu } = 1$, starting the system with the state ${\psi _1}\left( 0 \right) = 1,\; {\psi _2}\left( 0 \right) = 0$: (a) Time evolutions of the occupation probabilities ${\left| {{\psi _1}} \right|^2}$ and ${\left| {{\psi _2}} \right|^2}$; (b) time evolutions of phases ${\theta _1}(t)$ and ${\theta _2}(t)$; (c) time evolution of the sum of phases, $ {\theta _1}({t_0} + t) + {\theta _2}({t_0} - t) $. Here the time-inversion point is given by $ {t_0} = - 0.5 $. The system parameters are ${\gamma _0} = 1,\; {\gamma _1} = 1,\; \omega = 2, \;\nu = 1$.

    图 5  在共振情况下的系统动力学. ${{{\gamma _1}}}/{\nu } > 1$. (a) 两能级上的占有概率${\left| {{\psi _n}} \right|^2}$($n = 1, 2$)随时间演化. (b)相位${\theta _n}$($n = $$ 1, 2$)随时间演化. (c)以$ {t_0} = - 0.380 $为时间反演点的$ {\theta _1}({t_0} + t) + {\theta _2}({t_0} - t) $演化. 系统参数取为${\gamma _0} = 1,\;{\gamma _1} = 2, \; $$ \omega = 2,\; \nu = 1$ 初态为${\psi _1}(0) = 1,\; {\psi _2}(0) = 0$

    Figure 5.  System dynamics for the resonance case with the non-Hermitian parameters ${{{\gamma _1}}}/{\nu } > 1$, starting the system with the state ${\psi _1}(0) = 1, {\psi _2}(0) = 0$. (a) Time evolutions of the occupation probabilities ${\left| {{\psi _1}} \right|^2}$ and ${\left| {{\psi _2}} \right|^2}$. (b) Time evolutions of phases ${\theta _1}(t)$ and ${\theta _2}(t)$. (c) Time evolution of the sum of phases, $ {\theta _1}({t_0} + t) + {\theta _2}({t_0} - t) $. Here the time-inversion point is given by $ {t_0} = - 0.380 $. The system parameters are ${\gamma _0} = 1,\; {\gamma _1} = 2,\; \omega = 2,\;\nu = 1$.

  • [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [2]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902Google Scholar

    [3]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [4]

    Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N, Rotter S 2016 Nature 537 76Google Scholar

    [5]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G Lu, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [6]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [7]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173Google Scholar

    [8]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [9]

    Fleury R, Sounas D, Alù A 2015 Nat. Com. 6 5905

    [10]

    Liu T, Zhu X, Chen F, Liang S, Zhu J 2018 Phys. Rev. Lett. 120 124502Google Scholar

    [11]

    Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F, Guo G C 2016 Nat. Photonics 10 642Google Scholar

    [12]

    Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117Google Scholar

    [13]

    Gao W C, Zheng C, Liu L, Wang T J, Wang C 2021 Optics Express 29 517Google Scholar

    [14]

    Li J, Harter A K, Liu J, Melo L de, Joglekar Y N, Luo L 2019 Nat. Com. 10 855Google Scholar

    [15]

    Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Com. 8 1368Google Scholar

    [16]

    沈瑞昌, 张国强, 王逸璞, 游建强 2019 物理学报 68 230305Google Scholar

    Shen R C, Zhang G Q, Wang Y P, You J Q 2019 Acta Phys. Sin. 68 230305Google Scholar

    [17]

    Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X, Dun J 2019 Science 364 878Google Scholar

    [18]

    Zheng C, Hao L, Long G L 2013 Philos. Trans. R. Soc. A 371 20120053Google Scholar

    [19]

    Wen J, Zheng C, Kong X, Wei S, Xin T, Long G 2019 Phys. Rev. A 99 062122Google Scholar

    [20]

    Wang W C, Zhou Y L, Zhang H L, Zhang J, Zhang M C, Xie Y, Wu C W, Chen T, Ou B Q, Wu W, Jing H, Chen P X 2021 Phys. Rev. A 103 L020201Google Scholar

    [21]

    Ding L, Shi K, Zhang Q, Shen D, Zhang X, Zhang W 2021 Phys. Rev. Lett. 126 083604Google Scholar

    [22]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [23]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [24]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [25]

    Sun Y, Tan W, Li H Q, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903Google Scholar

    [26]

    Jin L, Song Z 2018 Phys. Rev. Lett. 121 073901Google Scholar

    [27]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187Google Scholar

    [28]

    Yu S, Meng Y, Tang J, Xu X, Wang Y, Yin P, Ke Z, Liu W, Li Z, Yang Y, Chen G, Han Y, Li C, Guo G 2020 Phys. Rev. Lett. 125 240506Google Scholar

    [29]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972Google Scholar

    [30]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [31]

    Assawaworrarit S, Yu X, Fan S 2017 Nature 546 387Google Scholar

    [32]

    Xu H, Mason D, Jiang L, Harris J G E 2016 Nature 537 80Google Scholar

    [33]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401

    [34]

    Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar

    [35]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [36]

    Mostafazadeh A 2002 J. Math. Phys. 43 2814Google Scholar

    [37]

    黄永峰, 曹怀信, 王文华 2020 物理学报 69 030301Google Scholar

    Huang Y F, Cao H X, Wang W H 2020 Acta Phys. Sin. 69 030301Google Scholar

    [38]

    Nixon S, Yang J 2016 Phys. Rev. A 93 031802(R)

    [39]

    Hang C, Gabadadze G, Huang G 2017 Phys. Rev. A 95 023833Google Scholar

    [40]

    Pan J, Zhou L 2020 Phys. Rev. B 102 094305Google Scholar

    [41]

    Luo X B, Huang J H, Zhong H H, Qin X Z, Xie Q T, Kivshar Y S, Lee C H 2013 Phys. Rev. Lett. 110 243902Google Scholar

    [42]

    Chitsazi M, Li H, Ellis F M, Kottos T 2017 Phys. Rev. Lett. 119 093901Google Scholar

    [43]

    Duan L, Wang Y, Chen Q 2020 Chin. Phys. Lett. 37 081101Google Scholar

    [44]

    Xie Q, Rong S, Liu X 2018 Phys. Rev. A 98 052122Google Scholar

    [45]

    Koutserimpas T T, Alù A, Fleury R 2018 Phys. Rev. A 97 013839Google Scholar

    [46]

    Luo X B, Wu D, Luo S, Guo Y, Yu X, Hu Q 2014 J. Phys. A:Math. Theor 47 345301Google Scholar

    [47]

    Yang B, Luo X B, Hu Q, Yu X 2016 Phys. Rev. A 94 043828Google Scholar

    [48]

    Luo X B, Yang B, Zhang X F, Li L, Yu X 2017 Phys. Rev. A 95 052128Google Scholar

    [49]

    Cui B, Wang L C, Yi X X 2010 Phys. Rev. A 82 062105

    [50]

    Liu Z P, Zhang J, Özdemir Ş K, Peng B, Jing H, Lu X Y, Li C W, Yang L, Nori F, Liu Y 2016 Phys. Rev. Lett. 117 110802Google Scholar

    [51]

    Bender C M, Brody D C, Jones H F, Meister B K 2007 Phys. Rev. Lett. 98 040403Google Scholar

  • [1] Tan Chao, Liang Yong, Zou Min, Lei Tong, Chen Long, Tang Ping-Hua, Liu Ming-Wei. Dynamics of quadratic phase controlled Hermite-Gaussian beams in fractional systems based on different variable coefficients and potentials. Acta Physica Sinica, 2024, 73(13): 134205. doi: 10.7498/aps.73.20240427
    [2] Jiang Cui, Li Jia-Rui, Qi Di, Zhang Lian-Lian. Effect of imaginary potential energy with parity-time symmetry on band structures and edge states of T-graphene. Acta Physica Sinica, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [3] Wang Li-Kai, Wang Yu-Qian, Guo Zhi-Wei, Jiang Hai-Tao, Li Yun-Hui, Yang Ya-Ping, Chen Hong. Research progress of magnetic resonance wireless power transfer based on higher-order non-Hermitian physics. Acta Physica Sinica, 2024, 73(20): 201101. doi: 10.7498/aps.73.20241079
    [4] Zhang Guang-Cheng, Sun Wu, Zhou Zhi-Peng, Quan Xiu-E, Ye Fu-Qiu. Parity-time symmetry characterization and dynamics of periodically modulated four-channel optical waveguides. Acta Physica Sinica, 2024, 73(16): 164201. doi: 10.7498/aps.73.20240690
    [5] Jiang Hong-Fan, Lin Ji, Hu Bei-Bei, Zhang Xiao. Nonlocal soliton in non-parity-time-symmetric coupler. Acta Physica Sinica, 2023, 72(10): 104205. doi: 10.7498/aps.72.20230082
    [6] Xu Can-Hong, Xu Zhi-Cong, Zhou Zi-Yu, Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of non-Hermitian lattice models. Acta Physica Sinica, 2023, 72(20): 200301. doi: 10.7498/aps.72.20230914
    [7] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [8] Deng Tian-Shu. Non-Hermitian skin effect in a domain-wall system. Acta Physica Sinica, 2022, 71(17): 170306. doi: 10.7498/aps.71.20221087
    [9] Hou Bo, Zeng Qi-Bo. Non-Hermitian mosaic dimerized lattices. Acta Physica Sinica, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [10] Qu Deng-Ke,  Fan Yi,  Xue Peng. Information retrieval and criticality in high-dimensional parity-time-symmetric systems. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220511
    [11] Qu Deng-Ke, Fan Yi, Xue Peng. Information retrieval and criticality in high-dimensional parity-time-symmetric systems. Acta Physica Sinica, 2022, 71(13): 130301. doi: 10.7498/aps.70.20220511
    [12] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [13] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [14] Gao Jie, Hang Chao. Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Acta Physica Sinica, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [15] Tang Yuan-Jiang, Liang Chao, Liu Yong-Chun. Research progress of parity-time symmetry and anti-symmetry. Acta Physica Sinica, 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [16] Hu Zhou,  Zeng Zhao-Yun,  Tang jia,  Luo Xiao-bing. Quasi-Parity-Time symmetric dynamics in a periodcially driven two-level non-Hermitian system. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [17] Sun Kong-Hao, Yi Wei. Dynamics of non-Hermitian local topological marker. Acta Physica Sinica, 2021, 70(23): 230309. doi: 10.7498/aps.70.20211576
    [18] Zhang Yi, Jin Shi-Xin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502. doi: 10.7498/aps.62.234502
    [19] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [20] Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin. Dynamical evolution for time-dependent qscillators. Acta Physica Sinica, 2008, 57(11): 6736-6740. doi: 10.7498/aps.57.6736
Metrics
  • Abstract views:  5844
  • PDF Downloads:  328
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2022
  • Accepted Date:  10 March 2022
  • Available Online:  06 April 2022
  • Published Online:  05 April 2022

/

返回文章
返回