[1] |
Hu Zhou, Zeng Zhao-Yun, Tang jia, Luo Xiao-bing. Quasi-Parity-Time symmetric dynamics in a periodcially driven two-level non-Hermitian system. Acta Physica Sinica,
2022, 0(0): 0-0.
doi: 10.7498/aps.71.20220270
|
[2] |
Hu Zhou, Zeng Zhao-Yun, Tang Jia, Luo Xiao-Bing. Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system. Acta Physica Sinica,
2022, 71(7): 074207.
doi: 10.7498/aps.70.20220270
|
[3] |
Shao Ya-Ting, Yan Kai, Wu Yin-Zhong, Hao Xiang. Dynamics of multipartite quantum coherence in asymmetric spin-orbit coupled system. Acta Physica Sinica,
2021, 70(1): 010301.
doi: 10.7498/aps.70.20201199
|
[4] |
Zhang Yi, Jin Shi-Xin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica,
2013, 62(23): 234502.
doi: 10.7498/aps.62.234502
|
[5] |
Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica,
2012, 61(4): 043205.
doi: 10.7498/aps.61.043205
|
[6] |
Ling Rui-Liang, Feng Jin-Fu, Hu Yun. Exact wave function of dual-coupled two-dimensional harmonic oscillators with time-dependent and anisotropic mass and frequency. Acta Physica Sinica,
2010, 59(2): 759-764.
doi: 10.7498/aps.59.759
|
[7] |
Ling Rui-Liang, Feng Jin-Fu. Exact wave function of the coupled harmonic oscillator with time-dependent mass and frequency. Acta Physica Sinica,
2009, 58(4): 2164-2167.
doi: 10.7498/aps.58.2164
|
[8] |
Li Jiang-Fan, Huang Chun-Jia, Jiang Zong-Fu, Huang Zu-Hong. The evolution and two-mode squeezed states of the time-dependent two coupled harmonic oscillators. Acta Physica Sinica,
2005, 54(2): 522-529.
doi: 10.7498/aps.54.522
|
[9] |
Zheng Yi, Yang Xin-E. Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states. Acta Physica Sinica,
2005, 54(2): 511-516.
doi: 10.7498/aps.54.511
|
[10] |
Wang Ping, Yang Xin-E, Song Xiao-Hui. Exact solution for a harmonic oscillator with a time-dependent inverse square po tential by path-integral. Acta Physica Sinica,
2003, 52(12): 2957-2960.
doi: 10.7498/aps.52.2957
|
[11] |
Liu Cheng-Yi, Liu Jiang, Yin Jian-Ling, Deng Dong-Mei, Fan Guang-Han. . Acta Physica Sinica,
2002, 51(11): 2431-2434.
doi: 10.7498/aps.51.2431
|
[12] |
LI LING, LI BO-ZANG, LIANG JIU-QING. LEWIS-RIESENFELD PHASES AND BERRY PHASES IN THEQUANTUM SYSTEM OF TIME-DEPENDENT HARMONICOSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica,
2001, 50(11): 2077-2082.
doi: 10.7498/aps.50.2077
|
[13] |
LING RUI-LIANG. PROPAGATOR AND EXACT WAVE FUNCTION OF THE TIME DEPENDENTLY DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica,
2001, 50(8): 1421-1424.
doi: 10.7498/aps.50.1421
|
[14] |
LI BO-ZANG, LI LING. RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica,
2001, 50(9): 1654-1660.
doi: 10.7498/aps.50.1654
|
[15] |
Li Zhi-jian, Cheng Jian-gang, Liang Jiu-qing. Time Evolution and Berry Phases of a Time-Dependent Oscillator in Fin ite-Dimensional Hilbert Space. Acta Physica Sinica,
2000, 49(1): 11-16.
doi: 10.7498/aps.49.11
|
[16] |
FU JIAN, GAO XIAO-CHUN, XU JING-BO, ZOU XU-BO. INVARIANT-RELATED UNITARY TRANSFORMATION METHOD AND EXACT SOLUTIONS FOR THE QUANTUM DIRAC FIELD IN A TIME-DEPENDENT SPATIALLY HOMOGENEOUS ELECTRIC FIELD. Acta Physica Sinica,
1999, 48(6): 1011-1022.
doi: 10.7498/aps.48.1011
|
[17] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE. EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica,
1999, 48(9): 1601-1604.
doi: 10.7498/aps.48.1601
|
[18] |
LIU DENG-YUN. THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica,
1998, 47(8): 1233-1240.
doi: 10.7498/aps.47.1233
|
[19] |
DANG LAN-FEN. TIME EVOLUTION AND SQUEEZED STATES OF A TIME-DEPEDENT OSCILLATOR SYSTEM. Acta Physica Sinica,
1998, 47(7): 1071-1077.
doi: 10.7498/aps.47.1071
|
[20] |
GAO XIAO-CHUN, XU JIN-BO, QIAN TIE-ZHENG. THE EXACT SOLUTION AND BERRY'S PHASE FOR THE GENERALIZED TIME-DEPENDENT HARMONIC OSCILLATOR. Acta Physica Sinica,
1991, 40(1): 25-32.
doi: 10.7498/aps.40.25
|