[1] |
Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica,
2020, 69(1): 014101.
doi: 10.7498/aps.69.20191181
|
[2] |
Liu Jin-An, Tu Jia-Long, Lu Zhi-Li, Wu Bai-Wei, Hu Qi, Ma Hong-Hua, Chen Huan, Yi Xu-Nong. Manipulating longitudinal photonic spin Hall effect based on dynamic and Pancharatnam-Berry phase. Acta Physica Sinica,
2019, 68(6): 064201.
doi: 10.7498/aps.68.20182004
|
[3] |
Chen Huan, Ling Xiao-Hui, He Wu-Guang, Li Qian-Guang, Yi Xu-Nong. Generation of Bessel beam by manipulating Pancharatnam-Berry phase. Acta Physica Sinica,
2017, 66(4): 044203.
doi: 10.7498/aps.66.044203
|
[4] |
Xing Yu-Heng, Xu Xi-Fang, Zhang Li-Fa. Topological phonons and phonon Hall effects. Acta Physica Sinica,
2017, 66(22): 226601.
doi: 10.7498/aps.66.226601
|
[5] |
Ge Lin, Ji Pei-Yong. Photon’s Berry phase under background of plasma waves. Acta Physica Sinica,
2009, 58(1): 347-353.
doi: 10.7498/aps.58.347
|
[6] |
Mei Feng-Xiang, Cai Jian-Le. Integral invariants of a generalized Birkhoff system. Acta Physica Sinica,
2008, 57(8): 4657-4659.
doi: 10.7498/aps.57.4657
|
[7] |
Ma Rui-Qiong, Li Yong-Fang, Shi Jian. Quantum interference effects of coherent instantaneous states and Berry phase. Acta Physica Sinica,
2008, 57(7): 4083-4090.
doi: 10.7498/aps.57.4083
|
[8] |
Zhang Yi. A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3833-3837.
doi: 10.7498/aps.55.3833
|
[9] |
Ma Zhong-Qi, Xu Bo-Wei. Exact quantization rule and the invariant. Acta Physica Sinica,
2006, 55(4): 1571-1579.
doi: 10.7498/aps.55.1571
|
[10] |
Wang Xiang-Qi, Feng De-Ren, Shang Lei, Pei Yuan-Ji, He Ning, Zhao Tao. Measurement and analysis of the pulsed magnetic field phase lag in the ceramic case. Acta Physica Sinica,
2004, 53(12): 4319-4324.
doi: 10.7498/aps.53.4319
|
[11] |
Li Hua-Zhong. Remarks on “Lewis-Riesenfeld phase” and quantum geometric phase. Acta Physica Sinica,
2004, 53(6): 1643-1646.
doi: 10.7498/aps.53.1643
|
[12] |
LI BO-ZANG, LI LING. RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica,
2001, 50(9): 1654-1660.
doi: 10.7498/aps.50.1654
|
[13] |
Li Zhi-jian, Cheng Jian-gang, Liang Jiu-qing. Time Evolution and Berry Phases of a Time-Dependent Oscillator in Fin ite-Dimensional Hilbert Space. Acta Physica Sinica,
2000, 49(1): 11-16.
doi: 10.7498/aps.49.11
|
[14] |
ZHANG RUN-DONG, YAN FENG-LI, LI BO-ZANG. HAMILTONIAN OPERATORS CONSTRUCTED FROM TWO KINDS OF FINITE-DEPTH QUANTUM POTENTIAL WELLS WITH TIME-DEPENDENT BOUNDARY CONDITIONS AND THEIR COMPLEX BERRY PHASES. Acta Physica Sinica,
1998, 47(10): 1585-1599.
doi: 10.7498/aps.47.1585
|
[15] |
LIU DENG-YUN. THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica,
1998, 47(8): 1233-1240.
doi: 10.7498/aps.47.1233
|
[16] |
LI BO-ZANG, ZHANG LING-YUN, ZHANG XIANG-DONG. NOTES ON THE QUANTUM INVARIANT AND ON THE-RELATION BETWEEN IT AND QUANTUM PHASE. Acta Physica Sinica,
1997, 46(11): 2080-2094.
doi: 10.7498/aps.46.2080
|
[17] |
GAO XIAO-CHUN, GAO JUN, FU JIAN. QUANTUM INVARIANT THEORY AND THE MOTION OF AN ION IN A COMBINED TRAP. Acta Physica Sinica,
1996, 45(6): 912-923.
doi: 10.7498/aps.45.912
|
[18] |
LI BO-CANG, WU JIAN-HUA. . Acta Physica Sinica,
1995, 44(1): 16-23.
doi: 10.7498/aps.44.16
|
[19] |
ZHANG YAO-ZHONG. QUANTUM GROUP Uq(SU( 1,1)),UNIVERSAL R MATRIX AND CASIMIR INVARIANT. Acta Physica Sinica,
1994, 43(2): 169-174.
doi: 10.7498/aps.43.169
|
[20] |
LIU DENG-YUN. TIME DEPENDENT BOUNDARY CONDITIONS AND BERRY PHASE. Acta Physica Sinica,
1993, 42(5): 705-710.
doi: 10.7498/aps.42.705
|