[1] |
Xu Xin-Xin, Zhang Yi. A new type of adiabatic invariant for fractional order non-conservative Lagrangian systems. Acta Physica Sinica,
2020, 69(22): 220401.
doi: 10.7498/aps.69.20200488
|
[2] |
Yang Chao, Chen Shu. Topological invariant in quench dynamics. Acta Physica Sinica,
2019, 68(22): 220304.
doi: 10.7498/aps.68.20191410
|
[3] |
Song Wen-Hua, Wang Ning, Gao Da-Zhi, Wang Hao-Zhong, Qu Ke. Concept of waveguide invariant spectrum and algorithm for its extraction. Acta Physica Sinica,
2017, 66(11): 114301.
doi: 10.7498/aps.66.114301
|
[4] |
Chen Ju, Zhang Yi. Perturbation to Noether symmetries and adiabatic invariants for Birkhoffian systems based on El-Nabulsi dynamical models. Acta Physica Sinica,
2014, 63(10): 104501.
doi: 10.7498/aps.63.104501
|
[5] |
Ding Qi, Hao Ai-Jing. Differential invariants for CDG equation and coupled KDV-MKDV equations. Acta Physica Sinica,
2014, 63(11): 110503.
doi: 10.7498/aps.63.110503
|
[6] |
Zhang Yi, Ge Wei-Kuan. An integral of a generalized Birkhoff system. Acta Physica Sinica,
2011, 60(5): 050202.
doi: 10.7498/aps.60.050202
|
[7] |
Lou Zhi-Mei. Approximate Lie symmetries and approximate invariants of the orbit differential equation for perturbed Kepler system. Acta Physica Sinica,
2010, 59(10): 6764-6769.
doi: 10.7498/aps.59.6764
|
[8] |
Li Yan-Min, Mei Feng-Xiang. Integral methods for the generalized Birkhoff equations. Acta Physica Sinica,
2010, 59(9): 5930-5933.
doi: 10.7498/aps.59.5930
|
[9] |
Li Guang-Cheng, Chen Lei-Ming, Wang Dong-Xiao, Wu Da-Yong. Manifold stability of equilibrium state of autonomous generalized Birkhoff system. Acta Physica Sinica,
2010, 59(5): 2932-2934.
doi: 10.7498/aps.59.2932
|
[10] |
Guo Mei-Yu, Gao Jie. Differential invariants and group classification of variable coefficient generalized Gardner equation. Acta Physica Sinica,
2009, 58(10): 6686-6691.
doi: 10.7498/aps.58.6686
|
[11] |
Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li. Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica,
2007, 56(6): 3043-3049.
doi: 10.7498/aps.56.3043
|
[12] |
Luo Shao-Kai. A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lut zky type, for Lagrangian systems. Acta Physica Sinica,
2007, 56(10): 5580-5584.
doi: 10.7498/aps.56.5580
|
[13] |
Ma Zhong-Qi, Xu Bo-Wei. Exact quantization rule and the invariant. Acta Physica Sinica,
2006, 55(4): 1571-1579.
doi: 10.7498/aps.55.1571
|
[14] |
Zhang Yi. A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3833-3837.
doi: 10.7498/aps.55.3833
|
[15] |
Zhang Yi, Mei Feng-Xiang. Perturbation to symmetries and adiabatic invariant for systems of generalized c lassical mechanics. Acta Physica Sinica,
2003, 52(10): 2368-2372.
doi: 10.7498/aps.52.2368
|
[16] |
Zhang Yi. . Acta Physica Sinica,
2002, 51(11): 2417-2422.
doi: 10.7498/aps.51.2417
|
[17] |
Zhang Yi. . Acta Physica Sinica,
2002, 51(8): 1666-1670.
doi: 10.7498/aps.51.1666
|
[18] |
Luo Shao-Kai, Lu Yi-Bing, Zhou Qiang, Wang Ying-De, Oyang Shi. . Acta Physica Sinica,
2002, 51(9): 1913-1917.
doi: 10.7498/aps.51.1913
|
[19] |
QIAO YONG-FEN, LI REN-JIE, ZHAO SHU-HONG. SYMMETRY AND INVARIANT IN GENERALIZED MECHANICAL SYSTEMS IN THE HIGH-DIMENSIONAL EXTENDED PHASE SPACE. Acta Physica Sinica,
2001, 50(5): 811-815.
doi: 10.7498/aps.50.811
|
[20] |
SUN HONG-LIN, ZHANG GANG, GUO DONG-YAO. TWO-WAVELENGTH NEIGHBORHOOD PRINCIPLE OF TWO-PHASE STRUCTURE INVARIANTS. Acta Physica Sinica,
1989, 38(5): 824-828.
doi: 10.7498/aps.38.824
|