x

## 留言板

 引用本文:
 Citation:

## Integral methods for the generalized Birkhoff equations

Li Yan-Min, Mei Feng-Xiang
PDF
• #### 摘要

场方法和最终乘子法是求解运动微分方程的基本方法. 本文将这两种方法应用于广义Birkhoff系统,求出了场方法的基本偏微分方程和该方程的完全积分; 根据Jacobi最终乘子定理求出了广义Birkhoff方程的解. 并举例说明结果的应用.

#### Abstract

The field method and the last multiplier method are general integral methods for solving the differential equations of motion. The two methods are applied to the generalized Birkhoff system,and the complete integrals of the basic partial differential equation are given. Furthermore,the solutions of the generalized Birkhoff equations are obtained by Jacobi last multiplier theorem. An example is given to illustrate the application of the results.

#### 作者及机构信息

###### (1)北京理工大学宇航学院力学系,北京 100081; (2)商丘师范学院物理与信息工程系,商丘 476000
• 基金项目: 国家自然科学基金(批准号:10772025,10932002,10972127)和河南省自然科学基金(批准号:082300410330,082300410370)资助的课题.

#### 参考文献

 [1] Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publisher) [2] Santilli R M 1978 Foundations of theoretical mechanicsⅠ(New York: Springer Verlag) [3] Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York: Springer Verlag) [4] Mei F X,Shi R C,Zhang Y F and Wu H B 1996 Dynamics of Birkhoff Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔、史荣昌、张永发、吴惠彬 1996 Birkhoff系统动力学(北京: 北京理工大学出版社)] [5] Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese) [张宏彬 2001 物理学报 50 1837] [6] Guo Y X,Luo S K,Shang M 2001 Rep. Math. Phys. 47 313 [7] Luo S K,Lu Y B,Zhou Q,Wang Y D,Ou Y S 2002 Acta Phys. Sin. 51 1913 (in Chinese) [罗绍凯、卢一兵、周 强、王应德、欧阳实 2002 物理学报 51 1913] [8] Shang M,Guo Y X,Mei F X 2007 Chin. Phys. 16 292 [9] Ge W K,Mei F X 2007 Acta Phys. Sin. 56 2476 (in Chinese) [葛伟宽、梅凤翔 2007 物理学报 56 2479] [10] Mei F X,Gang T Q,Xie J F 2006 Chin. Phys. 15 1678 [11] Fu J L,Chen L Q,Luo S K,Chen X W,Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼、陈立群、罗绍凯、陈向炜、王新民 2001 物理学报 50 2289] [12] Zhang Y 2008 Acta Phys. Sin. 57 5374 (in Chinese) [张 毅 2008 物理学报 57 5374] [13] Gu S L,Zhang H B 2004 Chin. Phys. 13 979 [14] Ding N,Fang J H,Chen X X 2008 Chin. Phys. B 17 1967 [15] Chen X W,Zhang R C,Mei F X 2000 Acta Mech. Sin. 16 282 [16] Chen X W,Mei F X 2000 Mechanics Research Communications 27 365 [17] Chen X W 2002 Chin. Phys. 11 441 [18] Li Y M 2008 J. of Henan Normal University 36 52 (in Chinese) [李彦敏 2008 河南师范大学学报(自然科学版) 36 52] [19] Mei F X 1993 Science in China Serie A 36 1456 [20] Mei F X,Zhang Y F,He G 2007 J. of Beijing Institute of Technology 27 1035 (in Chinese) [梅凤翔、张永发、何 光 2007 北京理工大学学报 27 1035] [21] Mei F X,Xie J F,Gang T Q 2008 Acta Phys. Sin. 57 4649 (in Chinese) [梅凤翔、谢加芳、冮铁强 2008 物理学报 57 4649] [22] Mei F X,Cai J L 2008 Acta Phys. Sin. 57 4657(in Chinese) [梅凤翔、蔡建乐 2008 物理学报 57 4657] [23] Ge W K,Mei F X 2009 Acta Phys. Sin. 58 699 (in Chinese) [葛伟宽、梅凤翔 2009 物理学报 58 699] [24] Mei F X,Xie J F,Gang T Q 2008 Acta Mech. Sin. 24 583 [25] Vujanovic ＇ B 1984 Int. J. Non-Linear Mech. 19 383 [26] Mei F X 1989 Acta Mech. Sin. 5 260 [27] Mei F X 1990 Acta Mech. Sin. 6 160 [28] Whittaker E T 1952 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge: Vniv Press) [29] Mei F X,Shang M 2008 Chin. Phys. Lett. 25 3837

#### 施引文献

•  [1] Birkhoff G D 1927 Dynamical Systems (Providence: AMS College Publisher) [2] Santilli R M 1978 Foundations of theoretical mechanicsⅠ(New York: Springer Verlag) [3] Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York: Springer Verlag) [4] Mei F X,Shi R C,Zhang Y F and Wu H B 1996 Dynamics of Birkhoff Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔、史荣昌、张永发、吴惠彬 1996 Birkhoff系统动力学(北京: 北京理工大学出版社)] [5] Zhang H B 2001 Acta Phys. Sin. 50 1837 (in Chinese) [张宏彬 2001 物理学报 50 1837] [6] Guo Y X,Luo S K,Shang M 2001 Rep. Math. Phys. 47 313 [7] Luo S K,Lu Y B,Zhou Q,Wang Y D,Ou Y S 2002 Acta Phys. Sin. 51 1913 (in Chinese) [罗绍凯、卢一兵、周 强、王应德、欧阳实 2002 物理学报 51 1913] [8] Shang M,Guo Y X,Mei F X 2007 Chin. Phys. 16 292 [9] Ge W K,Mei F X 2007 Acta Phys. Sin. 56 2476 (in Chinese) [葛伟宽、梅凤翔 2007 物理学报 56 2479] [10] Mei F X,Gang T Q,Xie J F 2006 Chin. Phys. 15 1678 [11] Fu J L,Chen L Q,Luo S K,Chen X W,Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼、陈立群、罗绍凯、陈向炜、王新民 2001 物理学报 50 2289] [12] Zhang Y 2008 Acta Phys. Sin. 57 5374 (in Chinese) [张 毅 2008 物理学报 57 5374] [13] Gu S L,Zhang H B 2004 Chin. Phys. 13 979 [14] Ding N,Fang J H,Chen X X 2008 Chin. Phys. B 17 1967 [15] Chen X W,Zhang R C,Mei F X 2000 Acta Mech. Sin. 16 282 [16] Chen X W,Mei F X 2000 Mechanics Research Communications 27 365 [17] Chen X W 2002 Chin. Phys. 11 441 [18] Li Y M 2008 J. of Henan Normal University 36 52 (in Chinese) [李彦敏 2008 河南师范大学学报(自然科学版) 36 52] [19] Mei F X 1993 Science in China Serie A 36 1456 [20] Mei F X,Zhang Y F,He G 2007 J. of Beijing Institute of Technology 27 1035 (in Chinese) [梅凤翔、张永发、何 光 2007 北京理工大学学报 27 1035] [21] Mei F X,Xie J F,Gang T Q 2008 Acta Phys. Sin. 57 4649 (in Chinese) [梅凤翔、谢加芳、冮铁强 2008 物理学报 57 4649] [22] Mei F X,Cai J L 2008 Acta Phys. Sin. 57 4657(in Chinese) [梅凤翔、蔡建乐 2008 物理学报 57 4657] [23] Ge W K,Mei F X 2009 Acta Phys. Sin. 58 699 (in Chinese) [葛伟宽、梅凤翔 2009 物理学报 58 699] [24] Mei F X,Xie J F,Gang T Q 2008 Acta Mech. Sin. 24 583 [25] Vujanovic ＇ B 1984 Int. J. Non-Linear Mech. 19 383 [26] Mei F X 1989 Acta Mech. Sin. 5 260 [27] Mei F X 1990 Acta Mech. Sin. 6 160 [28] Whittaker E T 1952 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge: Vniv Press) [29] Mei F X,Shang M 2008 Chin. Phys. Lett. 25 3837
•  [1] 王勇, 梅凤翔, 曹会英, 郭永新. 场方法的改进及其在积分Riemann-Cartan空间运动方程中的应用. 物理学报, 2018, 67(3): 034501. doi: 10.7498/aps.67.20171583 [2] 崔金超, 廖翠萃, 刘世兴, 梅凤翔. Birkhoff动力学函数成为约束系统第一积分的判别方法. 物理学报, 2017, 66(4): 040201. doi: 10.7498/aps.66.040201 [3] 李彦敏, 陈向炜, 吴惠彬, 梅凤翔. 广义Birkhoff系统的两类广义梯度表示. 物理学报, 2016, 65(8): 080201. doi: 10.7498/aps.65.080201 [4] 梅凤翔, 吴惠彬. 广义Birkhoff系统与一类组合梯度系统. 物理学报, 2015, 64(18): 184501. doi: 10.7498/aps.64.184501 [5] 崔金超, 赵喆, 郭永新. 构造Birkhoff表示的广义Hojman方法. 物理学报, 2013, 62(9): 090205. doi: 10.7498/aps.62.090205 [6] 葛伟宽, 张毅, 楼智美. 一类广义Birkhoff系统的无限小正则变换与积分. 物理学报, 2012, 61(14): 140204. doi: 10.7498/aps.61.140204 [7] 葛伟宽, 张毅. 广义Birkhoff系统的一类积分. 物理学报, 2011, 60(5): 050202. doi: 10.7498/aps.60.050202 [8] 葛伟宽, 张毅, 薛纭. Rosenberg问题的对称性与守恒量. 物理学报, 2010, 59(7): 4434-4436. doi: 10.7498/aps.59.4434 [9] 李彦敏, 梅凤翔. 一类广义Birkhoff系统的广义正则变换. 物理学报, 2010, 59(8): 5219-5222. doi: 10.7498/aps.59.5219 [10] 张毅. 自治广义Birkhoff系统的平衡稳定性. 物理学报, 2010, 59(1): 20-24. doi: 10.7498/aps.59.20 [11] 王传东, 刘世兴, 梅凤翔. 广义Pfaff-Birkhoff-d’Alembert原理与广义Birkhoff系统的形式不变性. 物理学报, 2010, 59(12): 8322-8325. doi: 10.7498/aps.59.8322 [12] 李体俊. 纠缠态投影算符的积分. 物理学报, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665 [13] 张毅. 广义Birkhoff系统的Birkhoff对称性与守恒量. 物理学报, 2009, 58(11): 7436-7439. doi: 10.7498/aps.58.7436 [14] 葛伟宽, 梅凤翔. 广义Birkhoff系统的时间积分定理. 物理学报, 2009, 58(2): 699-702. doi: 10.7498/aps.58.699 [15] 梅凤翔, 蔡建乐. 广义Birkhoff系统的积分不变量. 物理学报, 2008, 57(8): 4657-4659. doi: 10.7498/aps.57.4657 [16] 梅凤翔, 解加芳, 冮铁强. 广义Birkhoff系统动力学的一类逆问题. 物理学报, 2008, 57(8): 4649-4651. doi: 10.7498/aps.57.4649 [17] 葛伟宽, 梅凤翔. Birkhoff系统的时间积分定理. 物理学报, 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479 [18] 郑世旺, 贾利群. Birkhoff系统的局部能量积分. 物理学报, 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590 [19] 吴惠彬, 张永发, 梅凤翔. 求解微分方程的Hojman方法. 物理学报, 2006, 55(10): 4987-4990. doi: 10.7498/aps.55.4987 [20] 葛伟宽. Whittaker方程的场方法. 物理学报, 2006, 55(1): 10-12. doi: 10.7498/aps.55.10
##### 计量
• 文章访问数:  7773
• PDF下载量:  1078
• 被引次数: 0
##### 出版历程
• 收稿日期:  2009-11-28
• 修回日期:  2009-12-12
• 刊出日期:  2010-09-15

/