[1] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica,
2014, 63(16): 164501.
doi: 10.7498/aps.63.164501
|
[2] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li. Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica,
2014, 63(17): 170202.
doi: 10.7498/aps.63.170202
|
[3] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Zhang Yao-Yu, Han Yue-Lin. Generalized Hojman conserved quantity deduced from generalized Lie symmetry of Appell equations for a variable mass mechanical system in relative motion. Acta Physica Sinica,
2014, 63(1): 010201.
doi: 10.7498/aps.63.010201
|
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity for a variable mass holonomic system in relative motion. Acta Physica Sinica,
2013, 62(23): 231101.
doi: 10.7498/aps.62.231101
|
[5] |
Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun. Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica,
2012, 61(2): 021101.
doi: 10.7498/aps.61.021101
|
[6] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica,
2011, 60(11): 111101.
doi: 10.7498/aps.60.111101
|
[7] |
Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun. Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica,
2009, 58(1): 28-33.
doi: 10.7498/aps.58.28
|
[8] |
Qiao Yong-Fen, Zhao Shu-Hong. Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica,
2006, 55(2): 499-503.
doi: 10.7498/aps.55.499
|
[9] |
Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3813-3816.
doi: 10.7498/aps.55.3813
|
[10] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[11] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica,
2004, 53(12): 4021-4025.
doi: 10.7498/aps.53.4021
|
[12] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica,
2004, 53(7): 2035-2039.
doi: 10.7498/aps.53.2035
|
[13] |
Luo Shao-Kai, Mei Feng-Xiang. A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(3): 6-10.
doi: 10.7498/aps.53.6
|
[14] |
Fang Jian-Hui, Liao Yong-Pan, Zhang Jun. Non-Noether conserved quantity of a general form for mechanical systems with variable mass. Acta Physica Sinica,
2004, 53(12): 4037-4040.
doi: 10.7498/aps.53.4037
|
[15] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[16] |
Xu Zhi-Xin. . Acta Physica Sinica,
2002, 51(11): 2423-2425.
doi: 10.7498/aps.51.2423
|
[17] |
QIAO YONG-FEN, ZHAO SHU-HONG. EQUATIONS OF MOTION OF VARIABLE MASS NONHOLONOMIC DYNAMICAL SYSTEMS IN POINCARé-CHETAEV VARIABLES. Acta Physica Sinica,
2001, 50(5): 805-810.
doi: 10.7498/aps.50.805
|
[18] |
QIAO YONG-FEN, LI REN-JIE, MENG JUN. LINDEL?F'S EQUATIONS OF NONHOLONOMIC ROTATIONAL RELATIVISTIC SYSTEMS. Acta Physica Sinica,
2001, 50(9): 1637-1642.
doi: 10.7498/aps.50.1637
|
[19] |
FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica,
2001, 50(3): 390-393.
doi: 10.7498/aps.50.390
|
[20] |
FANG JIAN-HUI. CONSERVATION LAWS OF RELATIVISTIC VARIABLE MASS SYSTEMS. Acta Physica Sinica,
2001, 50(6): 1001-1005.
doi: 10.7498/aps.50.1001
|