[1] |
Yang Chao, Chen Shu. Topological invariant in quench dynamics. Acta Physica Sinica,
2019, 68(22): 220304.
doi: 10.7498/aps.68.20191410
|
[2] |
Song Wen-Hua, Wang Ning, Gao Da-Zhi, Wang Hao-Zhong, Qu Ke. Concept of waveguide invariant spectrum and algorithm for its extraction. Acta Physica Sinica,
2017, 66(11): 114301.
doi: 10.7498/aps.66.114301
|
[3] |
Lü Jun-Wei, Chi Cheng, Yu Zhen-Tao, Bi Bo, Song Qing-Shan. Research on the asphericity error elimination of the invariant of magnetic gradient tensor. Acta Physica Sinica,
2015, 64(19): 190701.
doi: 10.7498/aps.64.190701
|
[4] |
Shan Chuan-Jia. Berry phase and quantum phase transition in spin chain system with three-site interaction. Acta Physica Sinica,
2012, 61(22): 220302.
doi: 10.7498/aps.61.220302
|
[5] |
Rao Huang-Yun, Liu Yi-Bao, Jiang Yan-Yan, Guo Li-Ping, Wang Zi-Sheng. Geometric quantum phase for three-level mixed state. Acta Physica Sinica,
2012, 61(2): 020302.
doi: 10.7498/aps.61.020302
|
[6] |
Zheng Li-Ming, Liu Song-Hao, Wang Fa-Qiang. Geometric phase evolution of atom under non-Markovian environment. Acta Physica Sinica,
2009, 58(4): 2430-2434.
doi: 10.7498/aps.58.2430
|
[7] |
Mei Feng-Xiang, Cai Jian-Le. Integral invariants of a generalized Birkhoff system. Acta Physica Sinica,
2008, 57(8): 4657-4659.
doi: 10.7498/aps.57.4657
|
[8] |
Luo Shao-Kai. A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lut zky type, for Lagrangian systems. Acta Physica Sinica,
2007, 56(10): 5580-5584.
doi: 10.7498/aps.56.5580
|
[9] |
Zheng Ying-Hong, Chen Tong, Wang Ping, Chang Zhe. Properties of geometric phase under Galilean transformation. Acta Physica Sinica,
2007, 56(11): 6199-6203.
doi: 10.7498/aps.56.6199
|
[10] |
Zhang Yi. A new type of adiabatic invariants for Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3833-3837.
doi: 10.7498/aps.55.3833
|
[11] |
Ma Zhong-Qi, Xu Bo-Wei. Exact quantization rule and the invariant. Acta Physica Sinica,
2006, 55(4): 1571-1579.
doi: 10.7498/aps.55.1571
|
[12] |
Zhang Yi. . Acta Physica Sinica,
2002, 51(11): 2417-2422.
doi: 10.7498/aps.51.2417
|
[13] |
LI LING, LI BO-ZANG, LIANG JIU-QING. LEWIS-RIESENFELD PHASES AND BERRY PHASES IN THEQUANTUM SYSTEM OF TIME-DEPENDENT HARMONICOSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica,
2001, 50(11): 2077-2082.
doi: 10.7498/aps.50.2077
|
[14] |
FU JIAN, GAO XIAO-CHUN, XU JING-BO, ZOU XU-BO. INVARIANT-RELATED UNITARY TRANSFORMATION METHOD AND EXACT SOLUTIONS FOR THE QUANTUM DIRAC FIELD IN A TIME-DEPENDENT SPATIALLY HOMOGENEOUS ELECTRIC FIELD. Acta Physica Sinica,
1999, 48(6): 1011-1022.
doi: 10.7498/aps.48.1011
|
[15] |
LI BO-ZANG, ZHANG DE-GANG, WU JIAN-HUA, YAN FENG-LI. BLOCH THEOREM FOR THE EVOLUTION OF STATES IN THE CYCLIC QUANTUM SYSTEMS AND THE UNIFICATION OF RESONANT GEOMETRIC PHASES. Acta Physica Sinica,
1997, 46(2): 227-237.
doi: 10.7498/aps.46.227
|
[16] |
LI BO-ZANG, ZHANG LING-YUN, ZHANG XIANG-DONG. NOTES ON THE QUANTUM INVARIANT AND ON THE-RELATION BETWEEN IT AND QUANTUM PHASE. Acta Physica Sinica,
1997, 46(11): 2080-2094.
doi: 10.7498/aps.46.2080
|
[17] |
LAI YUN-ZHONG, LIANG JIU-QING. TIME EVOLUTION OF A QUANTUM SYSTEM WITH HAMILTONIAN CONSISTING OF TIME-DEPENDENT LINEAR COMBINATION OF SU(l, 1)AND SU(2) GENERATORS AND THE HERMITIAN INVARIANT OPERATOR. Acta Physica Sinica,
1996, 45(5): 738-746.
doi: 10.7498/aps.45.738
|
[18] |
GAO XIAO-CHUN, GAO JUN, FU JIAN. QUANTUM INVARIANT THEORY AND THE MOTION OF AN ION IN A COMBINED TRAP. Acta Physica Sinica,
1996, 45(6): 912-923.
doi: 10.7498/aps.45.912
|
[19] |
ZHANG YAO-ZHONG. QUANTUM GROUP Uq(SU( 1,1)),UNIVERSAL R MATRIX AND CASIMIR INVARIANT. Acta Physica Sinica,
1994, 43(2): 169-174.
doi: 10.7498/aps.43.169
|
[20] |
SUN HONG-LIN, ZHANG GANG, GUO DONG-YAO. TWO-WAVELENGTH NEIGHBORHOOD PRINCIPLE OF TWO-PHASE STRUCTURE INVARIANTS. Acta Physica Sinica,
1989, 38(5): 824-828.
doi: 10.7498/aps.38.824
|