[1] |
Liu Xi-Wang, Zhang Hong-Dan, Ben Shuai, Yang Shi-Dong, Ren Xin, Song Xiao-Hong, Yang Wei-Feng. Feynman path-integral strong-field dynamics calculation method. Acta Physica Sinica,
2023, 72(19): 198701.
doi: 10.7498/aps.72.20230451
|
[2] |
Tian Li-Man, Wen Yong-Li, Wang Yun-Fei, Zhang Shan-Chao, Li Jian-Feng, Du Jing-Song, Yan Hui, Zhu Shi-Liang. Research progress of measurement of propagators in path integrals. Acta Physica Sinica,
2023, 72(20): 200305.
doi: 10.7498/aps.72.20230902
|
[3] |
He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica,
2019, 68(20): 203701.
doi: 10.7498/aps.68.20190749
|
[4] |
Feng Ling, Ji Wan-Ni. Pricing of stochastic volatility stock index option based on Feynman path integral. Acta Physica Sinica,
2019, 68(20): 203101.
doi: 10.7498/aps.68.20190714
|
[5] |
Zhang Lu, Xie Tian-Ting, Luo Mao-Kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica,
2014, 63(1): 010506.
doi: 10.7498/aps.63.010506
|
[6] |
Ding Guang-Tao. On the first integrals of linear damped oscillators. Acta Physica Sinica,
2013, 62(6): 064501.
doi: 10.7498/aps.62.064501
|
[7] |
Qin Yue-Kai, Xu Xiu-Wei, Qu Jian-Tao. Quantum behaviors of the particles affected by the linear-damping and time-dependent external force. Acta Physica Sinica,
2012, 61(14): 140302.
doi: 10.7498/aps.61.140302
|
[8] |
Ling Rui-Liang, Feng Jin-Fu, Hu Yun. Exact wave function of dual-coupled two-dimensional harmonic oscillators with time-dependent and anisotropic mass and frequency. Acta Physica Sinica,
2010, 59(2): 759-764.
doi: 10.7498/aps.59.759
|
[9] |
Ling Rui-Liang, Feng Jin-Fu. Exact wave function of the coupled harmonic oscillator with time-dependent mass and frequency. Acta Physica Sinica,
2009, 58(4): 2164-2167.
doi: 10.7498/aps.58.2164
|
[10] |
Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin. Dynamical evolution for time-dependent qscillators. Acta Physica Sinica,
2008, 57(11): 6736-6740.
doi: 10.7498/aps.57.6736
|
[11] |
Zheng Yi, Yang Xin-E. Solution of time-dependent harmonic oscillator system using explicit Euler method and discussion of the cyclic initial states. Acta Physica Sinica,
2005, 54(2): 511-516.
doi: 10.7498/aps.54.511
|
[12] |
Yin Jian-Ling, Liu Cheng-Yi, Yang You-Yuan, Liu Jiang, Fan Guang-Han. Effective ABCD formulation of the propagation of the atom laser. Acta Physica Sinica,
2004, 53(2): 356-361.
doi: 10.7498/aps.53.356
|
[13] |
Wang Ping, Yang Xin-E, Song Xiao-Hui. Exact solution for a harmonic oscillator with a time-dependent inverse square po tential by path-integral. Acta Physica Sinica,
2003, 52(12): 2957-2960.
doi: 10.7498/aps.52.2957
|
[14] |
Liu Cheng-Yi, Liu Jiang, Yin Jian-Ling, Deng Dong-Mei, Fan Guang-Han. . Acta Physica Sinica,
2002, 51(11): 2431-2434.
doi: 10.7498/aps.51.2431
|
[15] |
LI BO-ZANG, LI LING. RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica,
2001, 50(9): 1654-1660.
doi: 10.7498/aps.50.1654
|
[16] |
XU XIU-WEI, LIU SHENG-DIAN, REN TING-QI, ZHANG YONG-DE. EVOLUTION OPERATOR AND WAVE FUNCTION OF A TIME-DEPENDENT OSCILLATOR. Acta Physica Sinica,
1999, 48(9): 1601-1604.
doi: 10.7498/aps.48.1601
|
[17] |
LIU DENG-YUN. THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica,
1998, 47(8): 1233-1240.
doi: 10.7498/aps.47.1233
|
[18] |
GAO XIAO-CHUN, XU JIN-BO, QIAN TIE-ZHENG. THE EXACT SOLUTION AND BERRY'S PHASE FOR THE GENERALIZED TIME-DEPENDENT HARMONIC OSCILLATOR. Acta Physica Sinica,
1991, 40(1): 25-32.
doi: 10.7498/aps.40.25
|
[19] |
LIU LIAO. FEYNMAN'S PATH-INTEGRAL METHOD AND HAWKING EVAPORATION. Acta Physica Sinica,
1982, 31(4): 519-524.
doi: 10.7498/aps.31.519
|
[20] |
CHANG SHIH-CHUN. THE FEYNMAN DIAGRAMMATIC TECHNIQUE FOR THE DOUBLE TIME DEPENDENT CAUSAL GREEN'S FUNCTION. Acta Physica Sinica,
1965, 21(4): 858-865.
doi: 10.7498/aps.21.858
|