[1] |
Qian Jia, Dang Shi-Pei, Zhou Xing, Dan Dan, Wang Zhao-Jun, Zhao Tian-Yu, Liang Yan-Sheng, Yao Bao-Li, Lei Ming. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform. Acta Physica Sinica,
2020, 69(12): 128701.
doi: 10.7498/aps.69.20200352
|
[2] |
Liu Xuan, Gao Teng, Xie Shi-Jie. Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica,
2020, 69(24): 246701.
doi: 10.7498/aps.69.20200789
|
[3] |
Jiang Tian-Shu, Xiao Meng, Zhang Zhao-Qing, Chan Che-Ting. Physics and topological properties of periodic and aperiodic transmission line networks. Acta Physica Sinica,
2020, 69(15): 150301.
doi: 10.7498/aps.69.20200258
|
[4] |
Mei Yu-Han, Shao Yue, Hang Zhi-Hong. Microwave experimental platform to demonstrate topology physics based on tight-binding model. Acta Physica Sinica,
2019, 68(22): 227803.
doi: 10.7498/aps.68.20191452
|
[5] |
Xin Wang, Wu Reng-Lai, Xue Hong-Jie, Yu Ya-Bin. Plasmonic excitations in mesoscopic-sized atomic chains:a tight-binding model. Acta Physica Sinica,
2013, 62(17): 177301.
doi: 10.7498/aps.62.177301
|
[6] |
Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica,
2013, 62(18): 187301.
doi: 10.7498/aps.62.187301
|
[7] |
Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of zigzag graphene nanoribbons. Acta Physica Sinica,
2013, 62(6): 067301.
doi: 10.7498/aps.62.067301
|
[8] |
Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica,
2013, 62(8): 087301.
doi: 10.7498/aps.62.087301
|
[9] |
Wang Xue-Mei, Liu Hong. Band structures of zigzag graphene nanoribbons. Acta Physica Sinica,
2011, 60(4): 047102.
doi: 10.7498/aps.60.047102
|
[10] |
Hu Hai-Xin, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Tight binding studies on the electronic structure of graphene nanoribbons. Acta Physica Sinica,
2009, 58(10): 7156-7161.
doi: 10.7498/aps.58.7156
|
[11] |
Liu Quan-Hui. The Cartesian momentum and the kinetic operators on curved surfaces. Acta Physica Sinica,
2008, 57(2): 674-677.
doi: 10.7498/aps.57.674
|
[12] |
Chen Qin, Li Tong-Cang, Shi Qin-Wei, Wang Xiao-Ping. Effects of open dangling end on the transport properties of single-wall carbon nanotubes. Acta Physica Sinica,
2005, 54(8): 3962-3966.
doi: 10.7498/aps.54.3962
|
[13] |
Xu Xiu-Lian, Wang Feng, Zhang Feng-Shou, Zeng Xiang-Hua. . Acta Physica Sinica,
2002, 51(1): 31-35.
doi: 10.7498/aps.51.31
|
[14] |
PAN BI-CAI. TIGHT-BINDING POTENTIAL WITH CORRECTION OF BONDING ENVIRONMENT FOR SILICON-HYDROGEN. Acta Physica Sinica,
2001, 50(2): 268-272.
doi: 10.7498/aps.50.268
|
[15] |
Xu Xiu-wei, Zhao Ji-de, Ren Ting-Qi. Matrix Elements of Arbitrary Exponential Quadratic Operator in Multi- Dimensional Phase Space. Acta Physica Sinica,
2000, 49(1): 17-19.
doi: 10.7498/aps.49.17
|
[16] |
Li Zhi-jian, Cheng Jian-gang, Liang Jiu-qing. Time Evolution and Berry Phases of a Time-Dependent Oscillator in Fin ite-Dimensional Hilbert Space. Acta Physica Sinica,
2000, 49(1): 11-16.
doi: 10.7498/aps.49.11
|
[17] |
JIANG QI, TAO RUI-BAO. REAL-SPACE RENORMALIZATION STUDY OF TIGHT-BIN-DING HAMILTONIAN WITH ARBITRARY BAND FILLING. Acta Physica Sinica,
1989, 38(11): 1778-1784.
doi: 10.7498/aps.38.1778
|
[18] |
ZHANG ZHAO-QING. AN ALTERNATIVE DERIVATION OF COHERENT-POTENTIAL APPROXIMATION FOR DISORDERED ALLOYS-TIGHT BINDING MODEL. Acta Physica Sinica,
1982, 31(3): 285-293.
doi: 10.7498/aps.31.285
|
[19] |
XU YONG-NIAN. TIGHT-BINDING CALCULATION FOR GaAs (110) SURFACE. Acta Physica Sinica,
1981, 30(10): 1400-1405.
doi: 10.7498/aps.30.1400
|
[20] |
HSU CHIH-CHUNG, HSIEH HSI-TEH. THE MATRIX ELEMENT OF SPACE GROUP OPERATORS. Acta Physica Sinica,
1965, 21(4): 802-816.
doi: 10.7498/aps.21.802
|