Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isotope effect of carrier transport in organic semiconductors

Liu Xuan Gao Teng Xie Shi-Jie

Citation:

Isotope effect of carrier transport in organic semiconductors

Liu Xuan, Gao Teng, Xie Shi-Jie
PDF
HTML
Get Citation
  • Isotopic substitution can effectively tune the device performances of organic semiconductors. According to the experimental results of isotope effects in electric, light and magnetic process in organic semiconductors, we adopt the tight-binding model with strong electron-phonon coupling to study the isotope effects on carrier transport. We try to give a quantificational explanation and show the physical origin of isotope effects on mobility in organic semiconductors in this work. Using polaron transport dynamics with diabatic approach, we simulate the carrier transport in an array of small molecule crystals under weak bias. Because of strong electron-phonon coupling in organic materials, an injected electron will induce lattice distortion, and the carriers are no longer free electrons or holes, but elementary excitations such as solitons, polarons or bipolarons. Our simulation results indicate that the existence of deuterium and 13C element will reduce the mobility of organic material, which means that the isotopic substitution can be utilized to manifest organic device performance. Besides, we also find that the isotope effect on mobility will increase with electron-phonon coupling increasing. This suggests that both the mass of lattice groups and electron-phonon coupling should be taken into account to understand the isotope effects in organic semiconductors. With the consideration of that, we derive the effective mass of polaron based on the continuum model, and verify that effective mass can successfully describe the isotope effect on mobility. The effective mass of carrier can be measured to represent the property of a material, which can tell us whether we need the isotopic substitution in organic layer to improve the device performance. Then we present the microcosmic movement of a polaron at the moment when it encounters isotopic substituted molecules. We come to the conclusion that the isotopic distribution will affect the instantaneous speed of the carrier, but has little effect on the mobility of the whole device when the substituted concentration remains constant. In conclusion, after simulating various possible isotope effects in materials, analyzing its physical mechanism and comparing calculation results in experiment, we provide a theoretical foundation for describing the isotope effects on mobility, which can be a basis of improving the performances of organic semiconductor devices.
      Corresponding author: Xie Shi-Jie, xsj@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974212) and the Key Basic Research Program of the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019ZD43)
    [1]

    Root S E, Savagatrup S, Printz A D, Rodriquez D, Lipomi D J 2017 Chem. Rev. 117 6467Google Scholar

    [2]

    Taniguchi T, Fukui K, Asahi R, Urabe Y, Ikemoto A, Nakamoto J, Inada Y, Yamao T, Hotta S 2017 Synth. Met. 227 162Google Scholar

    [3]

    de Jong M P 2016 Open Physics 14 337Google Scholar

    [4]

    Groves C 2017 Rep. Prog. Phys. 80 37Google Scholar

    [5]

    Danos A, MacQueen R W, Cheng Y Y, Dvorak M, Darwish T A, McCamey D R, Schmidt T W 2015 J. Phys. Chem. Lett. 6 3061Google Scholar

    [6]

    Stoltzfus D M, Joshi G, Popli H, Jamali S, Kavand M, Milster S, Grunbaum T, Bange S, Nahlawi A, Teferi M Y, Atwood SI, Leung A E, Darwish T A, Malissa H, Burn P L, Lupton J M, Boehme C 2020 J. Mater. Chem. C 8 2764Google Scholar

    [7]

    Wang P, Wang F F, Chen Y, Niu Q, Lu L, Wang H M, Gao X C, Wei B, Wu H W, Caic X, Zou D C 2013 J. Mater. Chem. C 1 4821Google Scholar

    [8]

    Nguyen T D, Hukic-Markosian G, Wang F, Wojcik L, Li X G, Ehrenfreund E, Vardeny Z V 2010 Nat. Mater. 9 345Google Scholar

    [9]

    Li L W, Li T Y, Arras M M L, Bonnesen P V, Peng X F, Li W, Hong K L 2020 Polymer 193 122375Google Scholar

    [10]

    Bartell L S, Roskos R R 1966 J. Chem. Phys. 44 457Google Scholar

    [11]

    White R P, Lipson J E G, Higgins J S 2010 Macromolecules 43 4287Google Scholar

    [12]

    Jiang J W, Lan J, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314Google Scholar

    [13]

    Chang D, Li T, Li L, Jakowski J, Huang J, Keum J K, Lee B, Bonnesen P V, Zhou M, Garashchuk S, Sumpter B G, Hong K 2018 Macromolecules 51 9393Google Scholar

    [14]

    Shi C, Zhang X, Yu C H, Yao Y F, Zhang W 2018 Nat. Commun. 9 481Google Scholar

    [15]

    Jakowski J, Huang J, Garashchuk S, Luo Y, Hong K, Keum J, Sumpter B G 2017 J. Phys. Chem. Lett. 8 4333Google Scholar

    [16]

    Jiang Y, Peng Q, Geng H, Ma H, Shuai Z 2015 Phys. Chem. Chem. Phys. 17 3273Google Scholar

    [17]

    Tong C C, Hwang K C 2007 J. Phys. Chem. C 111 3490Google Scholar

    [18]

    Shao M, Keum J, Chen J, He Y, Chen W, Browning J F, Jakowski J, Sumpter B G, Ivanov I N, Ma Y Z, Rouleau C M, Smith S C, Geohegan D B, Hong K, Xiao K 2014 Nat. Commun. 5 3180Google Scholar

    [19]

    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H 2020 Nat. Mater. 19 491Google Scholar

    [20]

    Ren X, Bruzek M J, Hanifi D A, Schulzetenberg A, Wu Y, Kim C H, Zhang Z, Johns J E, Salleo A, Fratini S, Troisi A, Douglas C J, Frisbie C D 2017 Adv. Electron. Mater. 3 1700018Google Scholar

    [21]

    Jiang Y, Geng H, Shi W, Peng Q, Zheng X, Shuai Z 2014 J. Phys. Chem. Lett. 5 2267Google Scholar

    [22]

    Jiang Y, Geng H, Li W, Shuai Z 2019 J. Chem. Theory Comput. 15 1477Google Scholar

    [23]

    Low F E, Pines D 1953 Phys. Rev. 91 193Google Scholar

    [24]

    Li W, Ren J, Shuai Z 2020 J. Phys. Chem. Lett. 11 4930Google Scholar

    [25]

    Liu X, Gao K, Fu J, Li Y, Wei J, Xie S 2006 Phys. Rev. B 74 172301Google Scholar

    [26]

    Troisi A, Orlandi G 2006 Phys. Rev. Lett. 96 086601Google Scholar

    [27]

    Johansson A A, Stafström S 2004 Phys. Rev. B 69 235205Google Scholar

    [28]

    Brankin R W, Gladwell I, Shampine L F http://www.netlib.org [2019-11-3]

    [29]

    Köhler A, Bässler H 2015 Electronic Processes in Organic Semiconductors: An Introduction (Weinheim: Wiley-VCH) pp193–292

    [30]

    Takayama H, Linliu Y R, Maki K 1980 Phys. Rev. B 21 2388Google Scholar

    [31]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar

    [32]

    Zhong M, Zeng W, Tang H, Wang L X, Liu F S, Tang B, Liu Q J 2019 Sol. Energy 190 617Google Scholar

  • 图 1  无机材料(inorganic materials, IM)与有机材料(organic materials, OM)中的同位素对迁移率影响示意图

    Figure 1.  Schematic diagram of isotope effects on mobility in inorganic materials (IM) and organic materials (OM).

    图 2  红荧烯与聚乙炔材料极化子迁移率随分子质量的变化(内插图为Ren等[20]对红荧烯材料计算结果)

    Figure 2.  Mobility changes with molecular mass for rubrene and polyacetylene. Inset: results of calculation for rubrene from Ren et al. [20].

    图 3  同位素效应随电声耦合的变化

    Figure 3.  Variation of isotope effect (IE) with electron-phonon coupling.

    图 4  瞬时迁移率的同位素效应 (a) 单分子同位素取代; (b) 多分子同位素连续取代, 取代起始位置均为第125格点; (c)多分子同位素不连续取代. 图(a)和图(c)中圆点表示同位素取代分子所在位置, 取代分子中H与C元素均被取代

    Figure 4.  Isotope effects on instantaneous mobility: (a) Isotopic substitution of one molecule; (b) isotopic substitution of continuous molecules, the initial position of all the substitution is on the 125th site; (c) isotopic substitution of discontinuous molecules. The dots in panels (a) and (c) indicate the locations of molecules in which both hydrogen and carbon are substituted.

    图 5  极化子平均迁移率及同位素效应与同位素浓度的关系

    Figure 5.  Avergae mobility and isotope effects depend on substituted concentration.

  • [1]

    Root S E, Savagatrup S, Printz A D, Rodriquez D, Lipomi D J 2017 Chem. Rev. 117 6467Google Scholar

    [2]

    Taniguchi T, Fukui K, Asahi R, Urabe Y, Ikemoto A, Nakamoto J, Inada Y, Yamao T, Hotta S 2017 Synth. Met. 227 162Google Scholar

    [3]

    de Jong M P 2016 Open Physics 14 337Google Scholar

    [4]

    Groves C 2017 Rep. Prog. Phys. 80 37Google Scholar

    [5]

    Danos A, MacQueen R W, Cheng Y Y, Dvorak M, Darwish T A, McCamey D R, Schmidt T W 2015 J. Phys. Chem. Lett. 6 3061Google Scholar

    [6]

    Stoltzfus D M, Joshi G, Popli H, Jamali S, Kavand M, Milster S, Grunbaum T, Bange S, Nahlawi A, Teferi M Y, Atwood SI, Leung A E, Darwish T A, Malissa H, Burn P L, Lupton J M, Boehme C 2020 J. Mater. Chem. C 8 2764Google Scholar

    [7]

    Wang P, Wang F F, Chen Y, Niu Q, Lu L, Wang H M, Gao X C, Wei B, Wu H W, Caic X, Zou D C 2013 J. Mater. Chem. C 1 4821Google Scholar

    [8]

    Nguyen T D, Hukic-Markosian G, Wang F, Wojcik L, Li X G, Ehrenfreund E, Vardeny Z V 2010 Nat. Mater. 9 345Google Scholar

    [9]

    Li L W, Li T Y, Arras M M L, Bonnesen P V, Peng X F, Li W, Hong K L 2020 Polymer 193 122375Google Scholar

    [10]

    Bartell L S, Roskos R R 1966 J. Chem. Phys. 44 457Google Scholar

    [11]

    White R P, Lipson J E G, Higgins J S 2010 Macromolecules 43 4287Google Scholar

    [12]

    Jiang J W, Lan J, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314Google Scholar

    [13]

    Chang D, Li T, Li L, Jakowski J, Huang J, Keum J K, Lee B, Bonnesen P V, Zhou M, Garashchuk S, Sumpter B G, Hong K 2018 Macromolecules 51 9393Google Scholar

    [14]

    Shi C, Zhang X, Yu C H, Yao Y F, Zhang W 2018 Nat. Commun. 9 481Google Scholar

    [15]

    Jakowski J, Huang J, Garashchuk S, Luo Y, Hong K, Keum J, Sumpter B G 2017 J. Phys. Chem. Lett. 8 4333Google Scholar

    [16]

    Jiang Y, Peng Q, Geng H, Ma H, Shuai Z 2015 Phys. Chem. Chem. Phys. 17 3273Google Scholar

    [17]

    Tong C C, Hwang K C 2007 J. Phys. Chem. C 111 3490Google Scholar

    [18]

    Shao M, Keum J, Chen J, He Y, Chen W, Browning J F, Jakowski J, Sumpter B G, Ivanov I N, Ma Y Z, Rouleau C M, Smith S C, Geohegan D B, Hong K, Xiao K 2014 Nat. Commun. 5 3180Google Scholar

    [19]

    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H 2020 Nat. Mater. 19 491Google Scholar

    [20]

    Ren X, Bruzek M J, Hanifi D A, Schulzetenberg A, Wu Y, Kim C H, Zhang Z, Johns J E, Salleo A, Fratini S, Troisi A, Douglas C J, Frisbie C D 2017 Adv. Electron. Mater. 3 1700018Google Scholar

    [21]

    Jiang Y, Geng H, Shi W, Peng Q, Zheng X, Shuai Z 2014 J. Phys. Chem. Lett. 5 2267Google Scholar

    [22]

    Jiang Y, Geng H, Li W, Shuai Z 2019 J. Chem. Theory Comput. 15 1477Google Scholar

    [23]

    Low F E, Pines D 1953 Phys. Rev. 91 193Google Scholar

    [24]

    Li W, Ren J, Shuai Z 2020 J. Phys. Chem. Lett. 11 4930Google Scholar

    [25]

    Liu X, Gao K, Fu J, Li Y, Wei J, Xie S 2006 Phys. Rev. B 74 172301Google Scholar

    [26]

    Troisi A, Orlandi G 2006 Phys. Rev. Lett. 96 086601Google Scholar

    [27]

    Johansson A A, Stafström S 2004 Phys. Rev. B 69 235205Google Scholar

    [28]

    Brankin R W, Gladwell I, Shampine L F http://www.netlib.org [2019-11-3]

    [29]

    Köhler A, Bässler H 2015 Electronic Processes in Organic Semiconductors: An Introduction (Weinheim: Wiley-VCH) pp193–292

    [30]

    Takayama H, Linliu Y R, Maki K 1980 Phys. Rev. B 21 2388Google Scholar

    [31]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar

    [32]

    Zhong M, Zeng W, Tang H, Wang L X, Liu F S, Tang B, Liu Q J 2019 Sol. Energy 190 617Google Scholar

  • [1] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] Jiang Tian-Shu, Xiao Meng, Zhang Zhao-Qing, Chan Che-Ting. Physics and topological properties of periodic and aperiodic transmission line networks. Acta Physica Sinica, 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [3] Mei Yu-Han, Shao Yue, Hang Zhi-Hong. Microwave experimental platform to demonstrate topology physics based on tight-binding model. Acta Physica Sinica, 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [4] Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai. H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach. Acta Physica Sinica, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [5] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [6] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [7] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [8] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [9] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [10] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [11] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of zigzag graphene nanoribbons. Acta Physica Sinica, 2013, 62(6): 067301. doi: 10.7498/aps.62.067301
    [12] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [13] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [14] Wang Xue-Mei, Liu Hong. Band structures of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(4): 047102. doi: 10.7498/aps.60.047102
    [15] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] Hu Hai-Xin, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Tight binding studies on the electronic structure of graphene nanoribbons. Acta Physica Sinica, 2009, 58(10): 7156-7161. doi: 10.7498/aps.58.7156
    [17] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [18] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He. Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [19] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong. Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [20] Chen Qin, Li Tong-Cang, Shi Qin-Wei, Wang Xiao-Ping. Effects of open dangling end on the transport properties of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(8): 3962-3966. doi: 10.7498/aps.54.3962
Metrics
  • Abstract views:  6841
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2020
  • Accepted Date:  18 August 2020
  • Available Online:  03 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回