Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach

Li Wen-Tao Yu Wen-Tao Yao Ming-Hai

Citation:

H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach

Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The isotopic effect is a significant way to further understand the reaction mechanism without greatly changing the system. However, the isotopic effect of the H + Li2 reaction has received little attention in previous theoretical studies. Furthermore, as a deep potential well exists on the reaction path, obtaining convergent result is very time-consuming. So some approximate methods were used in previous theoretical calculations. However the Coriolis coupling effect plays an important role in the reaction, and thus whether these approximate methods are reasonable needs further testing. Based on the potential energy surface (PES) reported by Song et al., the dynamical calculations of H/D + Li2 LiH/LiD + Li reactions are carried out by time dependent quantum wave packet method with second order split operator in a collision energy range from 0 to 0.4 eV. In order to obtain the convergent results, lots of convergence tests are carried out and because the Coriolis coupling effect plays an important role in the reaction, all the number of projections of total angular momentum J are included in the present calculation. The dynamical properties such as reaction probability, integral cross section, differential cross section are calculated and compared with previous theoretical values. Large discrepancies are found between present results and the values obtained from Gao et al. especially at high collision energies. Owing to the fact that the same PES is applied to the calculation and Gao's results of total angular momentum J=0 accord well with the present values, we suppose that the parameters used in the calculation have little influence on the final results and the main discrepancies are attributed to the number of projections of total angular momentum which are cut off in Gao et al.'s calculation. In order to verify our speculation, the numbers of projections of total angular momentum which are 1, 5, 10, 15, 20, and 25, are considered in the calculation, respectively. The results indicate that the main discrepancy between present values and the results obtained from Gao et al. can be attributed to the number of projections of total angular momentum used in Gao et al.'s calculation that is not convergent, and that the present values are more accurate than previous theoretical studies for all the numbers of projections of total angular momentum which are included in the calculation. Furthermore, when the H atom is substituted by the heavy isotope D atom, the reaction probability and integral cross section become large. However, it does not generate large effect on the reaction mechanism. The forward and backward symmetry differential cross section signals indicate that the complex forming reaction mechanism dominates the reaction.
      Corresponding author: Li Wen-Tao, wtlee1982@163.com
    • Funds: Project supported by the Doctoral Science Fund of Liaoning Province, China (Grant No. 201601349) and the Youth Fund of Education Department of Liaoning Province, China (Grant No. LQ2017001).
    [1]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [2]

    Prez-Ros J, Greene C H 2015 J. Chem. Phys. 143 041105

    [3]

    Wang B B, Han Y C, Cong S L 2016 J. Chem. Phys. 145 204304

    [4]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926

    [5]

    Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356

    [6]

    Kim S K, Herschbach D R 1987 Faraday Discuss. Chem. Soc. 84 159

    [7]

    Vezin B, Dugourd P, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209

    [8]

    Siegbahn P, Schaefer H F 1975 J. Chem. Phys. 62 3488.

    [9]

    Yan G S, Xian H, Xie D Q 1997 Sci. China Ser. B:Chem. 40 342

    [10]

    Maniero A M, Acioli P H, Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123

    [11]

    Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3

    [12]

    Yuan M L, Li W T, Chen M D 2017 Int. J. Quant. Chem. e25380

    [13]

    Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854

    [14]

    Vila H V R, Leal L A, Martins J B L, Skouteris D, eSilva G M, Gargano R 2012 J. Chem. Phys. 136 34319

    [15]

    Cunha W F, Leal L A, Cunha T F, Silva G M, Martins J B L, Gargano R 2014 J. Mol. Model 20 2315

    [16]

    Gao S B, Zhang J, Song Y Z, Meng Q T 2015 Eur. Phys. J. D 69 111

    [17]

    Gao S B, Zhang L, Song Y Z, Meng Q T 2016 Chem. Phys. Lett. 651 233

    [18]

    Fu B N, Zhang D H 2012 J. Chem. Phys. 136 194301

    [19]

    Shen P R, Han Y C, Li J L, Chen C J, Cong S L 2015 Laser Phys. Lett. 12 045302

    [20]

    Pang Y H, Wang B B, Han Y C, Cong S L, Niu Y Y 2016 Chin. J. Chem. Phys. 29 297

    [21]

    Gao W, Wang B B, Hu X J, Chai S, Han Y C, Greenwood J B 2017 Phys. Rev. A 96 013426

    [22]

    Yuan J C, Cheng D H, Chen M D 2014 RSC Adv. 4 36189

    [23]

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese)[段志欣, 邱明辉, 姚翠霞 2014 物理学报 63 063402]

    [24]

    Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101 (in Chinese)[张静,魏巍,高守宝,孟庆田 2015 物理学报 64 063101]

    [25]

    Yuan K J, Cheng Y, Liu X H, Harich S, Yang X M, Zhang D H 2006 Phys. Rev. Lett. 96 103202

    [26]

    Hankel M, Smith S C, Allan R J, Gray S K, Balint-Kurti G G 2006 J. Chem. Phys. 125 164303

    [27]

    Fu B, Zhang D H 2007 J. Phys. Chem. A 111 9516

    [28]

    Zhang D H 2006 J. Chem. Phys. 125 133102

    [29]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [30]

    Light J C, Carrington T 2000 Adv. Chem. Phys. 114 263

  • [1]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [2]

    Prez-Ros J, Greene C H 2015 J. Chem. Phys. 143 041105

    [3]

    Wang B B, Han Y C, Cong S L 2016 J. Chem. Phys. 145 204304

    [4]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926

    [5]

    Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356

    [6]

    Kim S K, Herschbach D R 1987 Faraday Discuss. Chem. Soc. 84 159

    [7]

    Vezin B, Dugourd P, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209

    [8]

    Siegbahn P, Schaefer H F 1975 J. Chem. Phys. 62 3488.

    [9]

    Yan G S, Xian H, Xie D Q 1997 Sci. China Ser. B:Chem. 40 342

    [10]

    Maniero A M, Acioli P H, Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123

    [11]

    Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3

    [12]

    Yuan M L, Li W T, Chen M D 2017 Int. J. Quant. Chem. e25380

    [13]

    Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854

    [14]

    Vila H V R, Leal L A, Martins J B L, Skouteris D, eSilva G M, Gargano R 2012 J. Chem. Phys. 136 34319

    [15]

    Cunha W F, Leal L A, Cunha T F, Silva G M, Martins J B L, Gargano R 2014 J. Mol. Model 20 2315

    [16]

    Gao S B, Zhang J, Song Y Z, Meng Q T 2015 Eur. Phys. J. D 69 111

    [17]

    Gao S B, Zhang L, Song Y Z, Meng Q T 2016 Chem. Phys. Lett. 651 233

    [18]

    Fu B N, Zhang D H 2012 J. Chem. Phys. 136 194301

    [19]

    Shen P R, Han Y C, Li J L, Chen C J, Cong S L 2015 Laser Phys. Lett. 12 045302

    [20]

    Pang Y H, Wang B B, Han Y C, Cong S L, Niu Y Y 2016 Chin. J. Chem. Phys. 29 297

    [21]

    Gao W, Wang B B, Hu X J, Chai S, Han Y C, Greenwood J B 2017 Phys. Rev. A 96 013426

    [22]

    Yuan J C, Cheng D H, Chen M D 2014 RSC Adv. 4 36189

    [23]

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese)[段志欣, 邱明辉, 姚翠霞 2014 物理学报 63 063402]

    [24]

    Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101 (in Chinese)[张静,魏巍,高守宝,孟庆田 2015 物理学报 64 063101]

    [25]

    Yuan K J, Cheng Y, Liu X H, Harich S, Yang X M, Zhang D H 2006 Phys. Rev. Lett. 96 103202

    [26]

    Hankel M, Smith S C, Allan R J, Gray S K, Balint-Kurti G G 2006 J. Chem. Phys. 125 164303

    [27]

    Fu B, Zhang D H 2007 J. Phys. Chem. A 111 9516

    [28]

    Zhang D H 2006 J. Chem. Phys. 125 133102

    [29]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [30]

    Light J C, Carrington T 2000 Adv. Chem. Phys. 114 263

  • [1] Zhao Wen-Li, Song Yu-Zhi, Ma Chao, Gao Feng, Meng Qing-Tian. Quantum dynamics study of reaction H+SiH using a new potential energy surface of SiH2(11A′). Acta Physica Sinica, 2024, 73(20): 203401. doi: 10.7498/aps.73.20240859
    [2] Zhou Yong. Quantum dynamics study of C—H stretching vibrational excitation in the F+CHD3 → HF+CD3 reaction. Acta Physica Sinica, 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [3] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [4] Li Wen-Tao, Yuan Mei-Ling, Wang Jie-Min. Dynamics of C+ + H2 reaction based on a new potential energy surface. Acta Physica Sinica, 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [5] Zhao Wen-Li, Sun Feng-Wei, Zhang Hong, Wang Yong-Gang, Gao Feng, Meng Qing-Tian. Quantum dynamics studies of the $\rm D+SiD^+ \to D_2+Si^ +$ reaction. Acta Physica Sinica, 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [6] Liu Xuan, Gao Teng, Xie Shi-Jie. Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [7] Yuan Fang-Yuan, Zhu Zi-Liang. State-to-state dynamics of D + DBr reaction. Acta Physica Sinica, 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [8] Yuan Mei-Ling, Li Wen-Tao. Dynamics studies of O+ + H2→ OH+ + H reaction. Acta Physica Sinica, 2019, 68(8): 083401. doi: 10.7498/aps.68.20182141
    [9] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [10] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [11] Zhang Jing, Wei Wei, Gao Shou-Bao, Meng Qing-Tian. H + Li2: a typical exothermic reactive system and its time-dependent dynamics investigation. Acta Physica Sinica, 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [12] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [13] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [14] Li Yong-Jun, Feng Hao, Sun Wei-Guo, Zeng Yang-Yang, Wang Xiao-Lian, Li Hui-Dong, Fan Qun-Cao. Study on vibrational excitation cross sections of low-energy electrons scattering from H2 molecule including exact exchange. Acta Physica Sinica, 2011, 60(4): 043401. doi: 10.7498/aps.60.043401
    [15] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] Wang Yue, Dong De-Zhi, Li Wei-Yan, Feng Er-Yin, Cui Zhi-Feng. Low-temperature collisions of Na2 with He. Acta Physica Sinica, 2009, 58(10): 6913-6919. doi: 10.7498/aps.58.6913
    [17] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [18] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He. Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [19] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong. Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [20] Bai Li-Hua, Zhang Qing-Gang, Liu Xin-Guo. Four-dimensional quantum scattering calculations on the D+CD4→CD3+D2 reaction. Acta Physica Sinica, 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
Metrics
  • Abstract views:  5333
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2018
  • Accepted Date:  22 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回