Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quasi-Parity-Time symmetric dynamics in a periodcially driven two-level non-Hermitian system

Hu Zhou Zeng Zhao-Yun Tang jia Luo Xiao-bing

Citation:

Quasi-Parity-Time symmetric dynamics in a periodcially driven two-level non-Hermitian system

Hu Zhou, Zeng Zhao-Yun, Tang jia, Luo Xiao-bing
PDF
Get Citation
  • In recent years, there have been intensive studies on non-Hermitian physics and parity-time (PT) symmetry, due to their fundamental importance in theory and outstanding applications. A distinctive character in PT-symmetric systems is phase transition (spontaneous PT-symmetry breaking), where the energy spectrum changes from all real to complex when the non-Hermitian parameter exceeds a certain threshold. However, the conditions for PT-symmetric system with real energy spectrum to occur are rather restrictive. Generalization of PT-symmetric potentials to wider classes of non-PT-symmetric complex potentials with all-real spectra is a currently important endeavor. The simple PT-symmetric two-level Floquet quantum system is now being actively explored, because it holds potential for realization of non-unitary single-qubit quantum gate. However, studies on the evolution dynamics of non-PT-symmetric two-level non-Hermitian Floquet quantum system still remain relatively rare.
    In this paper, we investigate the non-Hermitian physics of a periodically driven non-PT-symmetric two-level quantum system. By phase-space analysis, we find that there exist so-called pseudo fixed points in phase space representing the Floquet solutions with fixed population difference and a time-dependent relative phase between the two levels. Based on these pseudo fixed points, we analytically construct the non-unitary evolution operator and then explore the dynamics of the non-PT-symmetric two-level quantum system in different parameter regions. We confirm both analytically and numerically that the two-level non-Hermitian Floquet quantum system, although being non-parity-time-symmetric, still features a phase transition with the quasienergy spectrum changing from all real to complex, just as for PT symmetric systems. Furthermore, we reveal that a novel phenomenon called quasi-PT symmetric dynamics occurs in the time evolution process. The quasi-PT symmetric dynamics is so named in our paper, in the sense that the time-evolution of population probabilities in the non-PT-symmetric two-level system respects fully the time-space symmetry (PT symmetry), while time-evolution of the quantum state (containing the phase) does not, due to the fact that time-evolution of the phases of the probability amplitudes on the two levels violates the PT symmetry requirement.
  • [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [2]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V,Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902

    [3]

    Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192

    [4]

    Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N, Rotter S 2016 Nature (London)537 76

    [5]

    Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G Lu, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [6]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photonics 8 524

    [7]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173

    [8]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [9]

    Fleury R, Sounas D, Alù A, Nat. Commun. 2015 6 5905

    [10]

    Liu T, Zhu X, Chen F, Liang S, Zhu J 2018 Phys. Rev. Lett. 120 124502

    [11]

    Tang J S, Wang Y T, Yu S, He D Y, Xu J S, Liu B H, Chen G, Sun Y N, Sun K, Han Y J, Li C F, Guo G C 2016 Nat. Photonics 10 642

    [12]

    Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117

    [13]

    Gao W C, Zheng C, Liu L, Wang T J, Wang C 2021 Optics Express 29 517

    [14]

    Li J, Harter A K, Liu J, Melo L de, Joglekar Y N, Luo L 2019 Nat. Com. 10 855

    [15]

    Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat.Com. 8 1368

    [16]

    Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X, Dun J 2019 Science 364 878

    [17]

    Zheng C, Hao L, Long G L 2013 Philos. Trans. R. Soc., A 371 20120053

    [18]

    Wen J, Zheng C, Kong X, Wei S, Xin T, Long G 2019 Phys. Rev. A 99 062122

    [19]

    Wang W C, Zhou Y L, Zhang H L, Zhang J, Zhang M C, Xie Y, Wu C W, Chen T, Ou B Q, Wu W, Jing H, Chen P X 2021 Phys. Rev. A 103 L020201

    [20]

    Ding L, Shi K, Zhang Q, Shen D, Zhang X, Zhang W 2021 Phys. Rev. Lett. 126 083604

    [21]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901

    [22]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature (London)488 167

    [23]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [24]

    Sun Y, Tan W, Li H Q, Li J, Chen H 2014 Phys. Rev. Lett. 112 143903

    [25]

    Jin L, Song Z 2018 Phys. Rev. Lett. 121 073901

    [26]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature (London)548 187

    [27]

    Yu S, Meng Y, Tang J, Xu X, Wang Y, Yin P, Ke Z, Liu W, Li Z, Yang Y, Chen G, Han Y, Li C, Guo G 2020 Phys. Rev. Lett. 125 240506

    [28]

    Feng L, Wong Z J, Ma R M, Wang Y, Zhang X 2014 Science 346 972

    [29]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975

    [30]

    Assawaworrarit S, Yu X, Fan S 2017 Nature (London)546 387

    [31]

    Xu H, Mason D, Jiang L, Harris J G E 2016 Nature (London)537 80

    [32]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 27 270401

    [33]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [34]

    Mostafazadeh A 2002 J. Math. Phys. 43 205

    [35]

    Mostafazadeh A 2002 J. Math. Phys. 43 2814

    [36]

    Nixon S, Yang J 2016 Phys. Rev. A 93 031802(R)

    [37]

    Hang C, Gabadadze G, Huang G 2017 Phys. Rev. A 95 023833

    [38]

    Pan J, Zhou L 2020 Phys. Rev. B 102 094305

    [39]

    Luo X B, Huang J H, Zhong H H, Qin X Z, Xie Q T, Kivshar Y S, Lee C H 2013 Phys. Rev. Lett. 110 243902

    [40]

    Chitsazi M, Li H, Ellis F M, Kottos T 2017 Phys. Rev. Lett. 119 093901

    [41]

    Duan L, Wang Y, Chen Q 2020 Chin. Phys. Lett 37 081101

    [42]

    Xie Q, Rong S and Liu X 2018 Phys. Rev. A 98 052122

    [43]

    Koutserimpas T T, Alù A, Fleury R 2018 Phys. Rev. A 97 013839

    [44]

    Luo X B, Wu D, Luo S, Guo Y, Yu X, Hu Q 2014 J. Phys. A:Math. Theor. 47 345301

    [45]

    Yang B, Luo X B, Hu Q, Yu X 2016 Phys. Rev. A 94 043828

    [46]

    Luo X B, Yang B, Zhang X-F, Li L, Yu X 2017 Phys. Rev. A 95 052128

    [47]

    Cui B, Wang L C, Yi X X 2010 Phys. Rev. A 82 062105

    [48]

    Liu Z P, Zhang J, Özdemir Ş K, Peng B, Jing H, Lü X Y, Li C W, Yang L, Nori F, Liu Y 2016 Phys. Rev. Lett. 117 110802

    [49]

    Bender C M, Brody D C, Jones H F, Meister B K 2007 Phys. Rev. Lett. 98 040403

  • [1] Jiang Hong-Fan, Lin Ji, Hu Bei-Bei, Zhang Xiao. Nonlocal soliton in non-parity-time-symmetric coupler. Acta Physica Sinica, doi: 10.7498/aps.72.20230082
    [2] Xu Can-Hong, Xu Zhi-Cong, Zhou Zi-Yu, Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of non-Hermitian lattice models. Acta Physica Sinica, doi: 10.7498/aps.72.20230914
    [3] Preface to the special topic: Frontiers in non-Hermitian Physics. Acta Physica Sinica, doi: 10.7498/aps.71.130101
    [4] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, doi: 10.7498/aps.71.20221825
    [5] Deng Tian-Shu. Non-Hermitian skin effect in a domain-wall system. Acta Physica Sinica, doi: 10.7498/aps.71.20221087
    [6] Hou Bo, Zeng Qi-Bo. Non-Hermitian mosaic dimerized lattices. Acta Physica Sinica, doi: 10.7498/aps.71.20220890
    [7] Qu Deng-Ke,  Fan Yi,  Xue Peng. Information retrieval and criticality in high-dimensional parity-time-symmetric systems. Acta Physica Sinica, doi: 10.7498/aps.71.20220511
    [8] Qu Deng-Ke, Fan Yi, Xue Peng. Information retrieval and criticality in high-dimensional parity-time-symmetric systems. Acta Physica Sinica, doi: 10.7498/aps.70.20220511
    [9] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, doi: 10.7498/aps.71.20220914
    [10] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.71.20221706
    [11] Gao Jie, Hang Chao. Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Acta Physica Sinica, doi: 10.7498/aps.71.20220456
    [12] Tang Yuan-Jiang, Liang Chao, Liu Yong-Chun. Research progress of parity-time symmetry and anti-symmetry. Acta Physica Sinica, doi: 10.7498/aps.71.20221323
    [13] Hu Zhou, Zeng Zhao-Yun, Tang Jia, Luo Xiao-Bing. Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system. Acta Physica Sinica, doi: 10.7498/aps.70.20220270
    [14] Sun Kong-Hao, Yi Wei. Dynamics of non-Hermitian local topological marker. Acta Physica Sinica, doi: 10.7498/aps.70.20211576
    [15] Zhang Yi, Jin Shi-Xin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, doi: 10.7498/aps.62.234502
    [16] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, doi: 10.7498/aps.61.043205
    [17] Ren Xue-Zao, Jiang Dao-Lai, Cong Hong-Lu, Liao Xu. Exact calculations of the energy spectra and the dynamical properties of a two-level system. Acta Physica Sinica, doi: 10.7498/aps.58.5406
    [18] Fang Yong-Cui, Yang Zhi-An, Yang Li-Yun. Phase transition and entanglement entropy of Bose-Einstein condensates in double-well trap under periodic modulation. Acta Physica Sinica, doi: 10.7498/aps.57.661
    [19] Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin. Dynamical evolution for time-dependent qscillators. Acta Physica Sinica, doi: 10.7498/aps.57.6736
    [20] Chen Zeng-Jun, Ning Xi-Jing. Physical meaning of non-Hermitian Hamiltonian. Acta Physica Sinica, doi: 10.7498/aps.52.2683
Metrics
  • Abstract views:  2275
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Available Online:  19 March 2022

/

返回文章
返回