Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator

Li Ke Wang Ya-Nan Liu Ping Yu Fang-Qiu Dai Wei Shen Jun

Citation:

Experimental research on a 50 mK multi-stage adiabatic demagnetization refrigerator

Li Ke, Wang Ya-Nan, Liu Ping, Yu Fang-Qiu, Dai Wei, Shen Jun
PDF
HTML
Get Citation
  • With the development of condensed matter physics, space observation, and quantum technology in recent years, the demand for ultra-low temperature refrigeration has increased. The adiabatic demagnetization refrigerator (ADR) has the advantages of being unaffected by gravity, compact structure, and relatively low cost, which can meet the needs of space and ground applications.In this paper, a 50 mK multi-stage ADR is designed and developed which comprises a GM-type pulse tube cryocooler for precooling and three ADR stages connected in series. For easy installation and maintenance, the three ADR stages are placed on a separate cold plate which is connected to the 4 K cold plate via copper columns. The Dy3Ga5O12 (GGG) is employed as the refrigerant in the first stage, whereas CrK(SO4)2 · 12H2O (CPA) is utilized for the second stage and third stage. To control heat transfer between stages and the 4 K heat sink, active gas-gap heat switch and passive gas-gap heat switch are developed, with the latter having a switching ratio over 1000.The 4 T, 2 T and 1 T superconducting magnets are utilized in the 1st, 2nd and 3rd stage, respectively, and a numerical model is used to optimize the design of magnetic shielding. In addition, an ADR simulation model with a proportional-integral-derivative (PID) controller is constructed to assist in tuning the controller parameters in the experiment. The lowest temperature achieved in the experiment is 38 mK, with a temperature fluctuation of 10.6 μK. The durations of different cooling power (1, 2 and 3 μW) at 100 mK are also measured. It is calculated that the no-load maintenance time is about 4.3 h, the leakage heat power is about 4.5 μW, and the total cooling capacity is about 71 mJ. This refrigerator is the first Chinese multi-stage ADR that can reach a temperature under 50 mK, which lays an important foundation for subsequent research on continuous adiabatic demagnetization refrigeration.
      Corresponding author: Dai Wei, cryodw@mail.ipc.ac.cn ; Shen Jun, jshen@mail.ipc.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFC2203303), the Scientific Instrument Developing Project of the Chinese Academy of Sciences, China (Grant No. GJJSTD20190001), and the Foundation of Director of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China (Grant No. 2022-DW).
    [1]

    Serlemitsos A T, Sansebastian M, Kunes E 1992 Cryogenics 32 117Google Scholar

    [2]

    Serlemitsos A T, Sansebastian M, Kunes E S 1998 Advance in Cryogenic Engineering (Boston, MA: Springer) pp957–963

    [3]

    Shirron P, Wegel D, Dipirro M 2006 Proceedings of 24th International Conference on Low Temperature Physics Orlando, Florida (USA), August 10–17, 2006 p1573

    [4]

    Shirron P J, Kimball M O, Dipirro M J, Bials T G 2015 Phys. Procedia 67 250Google Scholar

    [5]

    Bartlett J, Hardy G, Hepburn I D, Blatt C B, Coker P, Crofts E, Winter B, Milward S, Aller R S, Brownhill M, Reed J, Linder M, Rando N 2010 Cryogenics 50 582Google Scholar

    [6]

    Bartlett J, Hardy G, Hepburn I, Milward S, Coker P, Theobald C 2012 Proceedings of SPIE Amsterdam Netherlands, September 24, 2012 p84521O

    [7]

    Brasiliano D A P, Duval J M, Luchier N, Eserivan S D, Andre J 2016 International Cryocoolers Conference San Diego, California (USA) June 20–23, 2016 p479

    [8]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Dipirro M, Ezoe Y, Fujimoto R, den Herder J W, Hirabayashi M, Ishisaki Y, Kanao K, Kawaharada M, Kelley R, Kilbourne C, Kitamoto S, McCammon D, Mihara T, Murakami M, Nakagawa T, Ohashi T, Porter F S, Satoh Y, Shirron P, Sugita H, Tamagawa T, Tashiro M, Yoshida S 2008 Prococeedings of SPIE Marseille France, July 15, 2008 p70113R

    [9]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Masui K, Asano K, Ohashi T, Ezoe Y, Ishisaki Y, Fujimoto R, Sato K, Kanao K, Yoshida S 2010 Cryogenics 50 597Google Scholar

    [10]

    Shirron P J, Canavan E R, Dipirro M J, Tuttle J G, Yeager C J 2000 Advance in Cryogenics Engineering. (Boston, MA: Springer) p1629

    [11]

    ADR Cryostats, Formfactor https://www.formfactor.com/products/quantum- cryo/?_all_filters=adr-cryostats [2023-7-4

    [12]

    Adiabatic Demagnetization Refrigerator, Entropy https://www.entropy- cryogenics.com/products/ [2023-7-4

    [13]

    万绍宁, 容锡燊 1987 低温物理学报 9 133Google Scholar

    Wan S N, Rong X S 1987 Chin. J. Low Temp. Phys. 9 133Google Scholar

    [14]

    冉启泽, 李金万 1990 低温物理学报 12 131Google Scholar

    Ran Q Z, Li J W 1990 Chin. J. Low Temp. Phys. 12 131Google Scholar

    [15]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 物理学报 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [16]

    王昌 2022 博士学位论文 (北京: 中国科学院大学)

    Wang C 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [17]

    禹芳秋, 沈俊, 戴巍, 李珂, 刘萍, 王昌 2022 中国工程热物理学会工程热力学与能源利用学术年会(2021)中国长沙, 4月9—10日, 2022

    Yu F Q, Shen J, Dai W, Li K, Liu P, Wang C 2022 Annual Conference of Engineering Thermodynamics and Energy Utilization of The Chinese Society of Engineering Thermophysics (2021) Changsha, April 9–10, 2022

    [18]

    Model 372 AC Resistance Bridge and Temperature Controller User’s Manual Lake Shore Cryotronics, Inc., 2019

    [19]

    Model 2700 Multimeter/Switch System User’s Manual Keithley Instruments, 2016

    [20]

    李珂, 王昌, 戴巍, 沈俊 2021 中国稀土学会学术年会, 中国成都, 10月22—24日, 2021 第88页

    Li K, Wang C, Dai W, Shen J 2021 Annual Conference of the Chinese Society of Rare Earths Chengdu, October 22–24, 2021 p88

  • 图 1  ADR基本结构与工作原理 (a) 结构示意图; (b) ADR制冷循环

    Figure 1.  Schematic and principle of ADR: (a) Schematic diagram; (b) refrigeration cycle of ADR.

    图 2  多级ADR结构示意图

    Figure 2.  Schematic diagram of multi-stage ADR.

    图 3  磁热模块结构示意图和实物图 (a) GGG磁热模块; (b) CPA磁热模块

    Figure 3.  Schematic diagram and photo of salt pills: (a) GGG salt pill; (b) CPA salt pill.

    图 4  气隙式热开关示意图与实物图 (a)主动式气隙热开关[17]; (b)被动式气隙热开关

    Figure 4.  Schematic diagrams and photos of gas-gap heat switches: (a) Active gas-gap heat switch[17]; (b) passive gas-gap heat switch.

    图 5  磁屏蔽的数值仿真与实验测试装置

    Figure 5.  Numerical simulation and experimental measurement of magnetic shielding.

    图 6  多级ADR系统实物图

    Figure 6.  Photos of multi-stage ADR.

    图 7  多级ADR运行时序及降温过程

    Figure 7.  Operation sequence and cooling process of multi-stage ADR.

    图 8  系统的温度波动

    Figure 8.  Temperature fluctuation of the system.

    图 9  100 mK下不同实际制冷功率的实验结果

    Figure 9.  Experimental results of different actual cooling power at 100 mK.

  • [1]

    Serlemitsos A T, Sansebastian M, Kunes E 1992 Cryogenics 32 117Google Scholar

    [2]

    Serlemitsos A T, Sansebastian M, Kunes E S 1998 Advance in Cryogenic Engineering (Boston, MA: Springer) pp957–963

    [3]

    Shirron P, Wegel D, Dipirro M 2006 Proceedings of 24th International Conference on Low Temperature Physics Orlando, Florida (USA), August 10–17, 2006 p1573

    [4]

    Shirron P J, Kimball M O, Dipirro M J, Bials T G 2015 Phys. Procedia 67 250Google Scholar

    [5]

    Bartlett J, Hardy G, Hepburn I D, Blatt C B, Coker P, Crofts E, Winter B, Milward S, Aller R S, Brownhill M, Reed J, Linder M, Rando N 2010 Cryogenics 50 582Google Scholar

    [6]

    Bartlett J, Hardy G, Hepburn I, Milward S, Coker P, Theobald C 2012 Proceedings of SPIE Amsterdam Netherlands, September 24, 2012 p84521O

    [7]

    Brasiliano D A P, Duval J M, Luchier N, Eserivan S D, Andre J 2016 International Cryocoolers Conference San Diego, California (USA) June 20–23, 2016 p479

    [8]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Dipirro M, Ezoe Y, Fujimoto R, den Herder J W, Hirabayashi M, Ishisaki Y, Kanao K, Kawaharada M, Kelley R, Kilbourne C, Kitamoto S, McCammon D, Mihara T, Murakami M, Nakagawa T, Ohashi T, Porter F S, Satoh Y, Shirron P, Sugita H, Tamagawa T, Tashiro M, Yoshida S 2008 Prococeedings of SPIE Marseille France, July 15, 2008 p70113R

    [9]

    Shinozaki K, Mitsuda K, Yamasaki N Y, Takei Y, Masui K, Asano K, Ohashi T, Ezoe Y, Ishisaki Y, Fujimoto R, Sato K, Kanao K, Yoshida S 2010 Cryogenics 50 597Google Scholar

    [10]

    Shirron P J, Canavan E R, Dipirro M J, Tuttle J G, Yeager C J 2000 Advance in Cryogenics Engineering. (Boston, MA: Springer) p1629

    [11]

    ADR Cryostats, Formfactor https://www.formfactor.com/products/quantum- cryo/?_all_filters=adr-cryostats [2023-7-4

    [12]

    Adiabatic Demagnetization Refrigerator, Entropy https://www.entropy- cryogenics.com/products/ [2023-7-4

    [13]

    万绍宁, 容锡燊 1987 低温物理学报 9 133Google Scholar

    Wan S N, Rong X S 1987 Chin. J. Low Temp. Phys. 9 133Google Scholar

    [14]

    冉启泽, 李金万 1990 低温物理学报 12 131Google Scholar

    Ran Q Z, Li J W 1990 Chin. J. Low Temp. Phys. 12 131Google Scholar

    [15]

    王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远 2021 物理学报 70 090702Google Scholar

    Wang C, Li K, Shen J, Dai W, Wang Y N, Luo E C, Shen B G, Zhou Y 2021 Acta Phys. Sin. 70 090702Google Scholar

    [16]

    王昌 2022 博士学位论文 (北京: 中国科学院大学)

    Wang C 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [17]

    禹芳秋, 沈俊, 戴巍, 李珂, 刘萍, 王昌 2022 中国工程热物理学会工程热力学与能源利用学术年会(2021)中国长沙, 4月9—10日, 2022

    Yu F Q, Shen J, Dai W, Li K, Liu P, Wang C 2022 Annual Conference of Engineering Thermodynamics and Energy Utilization of The Chinese Society of Engineering Thermophysics (2021) Changsha, April 9–10, 2022

    [18]

    Model 372 AC Resistance Bridge and Temperature Controller User’s Manual Lake Shore Cryotronics, Inc., 2019

    [19]

    Model 2700 Multimeter/Switch System User’s Manual Keithley Instruments, 2016

    [20]

    李珂, 王昌, 戴巍, 沈俊 2021 中国稀土学会学术年会, 中国成都, 10月22—24日, 2021 第88页

    Li K, Wang C, Dai W, Shen J 2021 Annual Conference of the Chinese Society of Rare Earths Chengdu, October 22–24, 2021 p88

  • [1] Zu Hong-Ye, Cheng Wei-Jun, Wang Ya-Nan, Wang Xiao-Tao, Li Ke, Dai Wei. Experimental analysis of condensation-pump dilution refrigerators. Acta Physica Sinica, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [2] Luo Jin-Bao, Vasiliy Pelenovich, Zeng Xiao-Mei, Hao Zhong-Hua, Zhang Xiang-Yu, Zuo Wen-Bin, Fu De-Jun. Effect of ion dose ratio on multilevel energy smoothing model of gas cluster. Acta Physica Sinica, 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [3] Wang Chang, Li Ke, Shen Jun, Dai Wei, Wang Ya-Nan, Luo Er-Cang, Shen Bao-Gen, Zhou Yuan. Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region. Acta Physica Sinica, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [4] Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures. Acta Physica Sinica, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [5] Liu Zhen, Huang Jie, Wang Jian-Tao, Zhao Yong-Jun, Chen Shi-Wen. Generalized unambiguous tracking method based on pseudo correlation function for multi-level coded symbol modulated signals. Acta Physica Sinica, 2017, 66(13): 139101. doi: 10.7498/aps.66.139101
    [6] Li Zhen-Xing, Li Ke, Shen Jun, Dai Wei, Gao Xin-Qiang, Guo Xiao-Hui, Gong Mao-Qiong. Progress of room temperature magnetic refrigeration technology. Acta Physica Sinica, 2017, 66(11): 110701. doi: 10.7498/aps.66.110701
    [7] Gao Xin-Qiang, Shen Jun, He Xiao-Nan, Tang Cheng-Chun, Dai Wei, Li Ke, Gong Mao-Qiong, Wu Jian-Feng. Numerical simulation of a hybrid magnetic refrigeration combined with high pressure Stirling regenerative refrigeration effect. Acta Physica Sinica, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [8] Yun Jiang-Juan, Chen Zheng, Li Shang-Jie. Multistage microstructural evolution caused by deformation in two-mode phase field crystals. Acta Physica Sinica, 2014, 63(9): 098106. doi: 10.7498/aps.63.098106
    [9] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Error synthesis and statistical analysis on stepped mirror array by Monte Carlo method. Acta Physica Sinica, 2012, 61(22): 220701. doi: 10.7498/aps.61.220701
    [10] Li Fei, Xiao Liu, Liu Pu-Kun, Yuan Guang-Jiang, Yi Hong-Xia, Wan Xiao-Sheng. Study on estimating efficiency of multistage depressed collector in traveling wave tubes. Acta Physica Sinica, 2012, 61(10): 102901. doi: 10.7498/aps.61.102901
    [11] Wang Bo, Liang Zhong-Zhu, Kong Yan-Mei, Liang Jing-Qiu, Fu Jian-Guo, Zheng Ying, Zhu Wan-Bin, Lü Jin-Guang, Wang Wei-Biao, Pei Shu, Zhang Jun. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [12] Qin Ming, Xu Jian-Ping. Study of multilevel pulse train control technique for switching converters. Acta Physica Sinica, 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [13] Zhang Shan, Wu Fu-Quan, Wu Wen-Di. Characteristics of multistage quartz optical filter based on the optical rotatory dispersion effect. Acta Physica Sinica, 2008, 57(8): 5020-5026. doi: 10.7498/aps.57.5020
    [14] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Multi-party multi-level quantum key distribution protocol based on entanglement swapping. Acta Physica Sinica, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
    [15] Fu Zun-Tao, Liu Shi-Kuo, Liu Shi-Da. New multi-order exact solutions to a kind of nonlinear evolution equations. Acta Physica Sinica, 2003, 52(12): 2949-2953. doi: 10.7498/aps.52.2949
    [16] Wei Ji-Lin, Zhang Li-Min, Yu Shu-Qin, Jiang Zhi-Peng. . Acta Physica Sinica, 2002, 51(1): 42-48. doi: 10.7498/aps.51.42
    [17] MENG JI-BAO, CHEN ZHAO-JIA, LUO JIAN-LIN, BAI HAI-YANG, WANG WEI-HUA, ZHENG PING, ZHANG JIE, SU SHAO-KUI, WANG YU-PENG. STUDY OF THE ULTRA-LOW TEMPERATURE RESISTANCES OF HEAVY FERMION SYSTEM CeCu6-xNix. Acta Physica Sinica, 2001, 50(8): 1632-1636. doi: 10.7498/aps.50.1632
    [18] Huang hong-Bin. . Acta Physica Sinica, 1995, 44(4): 545-551. doi: 10.7498/aps.44.545
    [19] LIU JIN-SONG. MULTI-STAGE COHERENT OPTICAL AMPLIFICATION BASED ON TWO-BEAM COUPLING. Acta Physica Sinica, 1993, 42(9): 1459-1462. doi: 10.7498/aps.42.1459
    [20] LI YU, XIMEN JI-YE. ON THE RELATIVISTIC ABERRATION THEORY OF A COMBINED FOCUSING-DEFLECTION SYSTEM WITH MULTI-STAGE DEFLECTORS. Acta Physica Sinica, 1982, 31(5): 604-614. doi: 10.7498/aps.31.604
Metrics
  • Abstract views:  2418
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2023
  • Accepted Date:  28 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回