Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of ion dose ratio on multilevel energy smoothing model of gas cluster

Luo Jin-Bao Vasiliy Pelenovich Zeng Xiao-Mei Hao Zhong-Hua Zhang Xiang-Yu Zuo Wen-Bin Fu De-Jun

Citation:

Effect of ion dose ratio on multilevel energy smoothing model of gas cluster

Luo Jin-Bao, Vasiliy Pelenovich, Zeng Xiao-Mei, Hao Zhong-Hua, Zhang Xiang-Yu, Zuo Wen-Bin, Fu De-Jun
PDF
HTML
Get Citation
  • In this study, two kinds of gas cluster ion beam energy modes with different ion dose ratios are proposed to improve the traumatic surface of n-Si (100) single crystal. In mode1, low-dose high-energy clusters and high-dose low-energy clusters are used, while in mode2, high-dose high-energy clusters and low-dose low-energy clusters are used. The results show that the flattening effect of mode 1 is better than that of mode 2, and the root mean square roughness of mode 1 and mode 2 are 0.62 nm and 1.02 nm, respectively. This is because in multi-level energy mode 2, high-dose high-energy clusters are used to bombard the target surface in the early stage, so that more ion damages will be left after high-energy cluster bombardment. In the later stage, low-dose low-energy clusters can only remove part of the ion damages, and the repair strength is not strong enough. In multi-level energy mode1, we first use low-dose high-energy clusters to bombard the surface of the target, so that the high-energy clusters can quickly remove the shape objects with high protrusion on the sample surface, and in the low-dose mode, it will not leave too many ion damages, which is conducive to the later repair. In the first stage of multi-level energy mode, high-dose low-energy clusters are used to bombard the target surface, which can not only reduce the ion loss, but also increase the time for low-energy clusters to repair ion damages, thereby yielding the optimal flattening effect. In order to verify the relationship among the damage removal, ion damage degree and cluster energy, a single energy cluster bombardment experiment with mechanical damage is carried out before the multi-level energy mode modification is studied. The results show that when the cluster ions are accelerated at 15 kV high voltage, the scratch removal efficiency is highest, and the surface scratch is very shallow, but the decease of roughness is not obvious; when the cluster ions are accelerated at 8 kV and 5 kV, the sample surface becomes fine and the remaining ion damages are least. At the same time, a comparison of the target bombarded by the multi-level energy mode 1 clusters with that by the single energy clusters shows that the multi-level energy mode can obtain a smoother target surface than the single 15 keV high-energy cluster treatment; the multi-level energy mode can better remove scratches and other wounds than the single 5 keV low-energy cluster treatment. Multistage energy mode 1 integrates the advantages of high and low energy clusters, thereby achieving the best flattening effect.
      Corresponding author: Vasiliy Pelenovich, pelenovich@mail.ru ; Zeng Xiao-Mei, 1714399588@qq.com ; Hao Zhong-Hua, zhhao@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875210, U1832127), the Science and Technology Planning Project of Guangdong Province (Grant Nos. 2018A050506082, 2020A1515011531, 2020A1515011451).
    [1]

    Matsuo J, Katsumata H, Minami E, Yamada I 2000 Nucl. Instrum. Methods B 161-163 952Google Scholar

    [2]

    Goto K, Matsuo J, Tada Y, Momiyama Y, Sugii T, Yamada I 1997 IEDM Tech. Digst. 471Google Scholar

    [3]

    Toyoda N, Hagiwara N, Matsuo J, Yamada I 1999 Nucl. Instrum. MethodsB 148 639Google Scholar

    [4]

    Yamada I, Takaoka G H 1993 Jpn. J. Appl. Phys. 32 2121Google Scholar

    [5]

    Qin W, Howson R P, Akizuki M, Matsuo J, Takaoka G, Yamada I 1998 Mater. Chem. Phys. 54 258Google Scholar

    [6]

    Seki T, Matsuo J, Yamada I 2000 Nucl. Instrum. Methods B 161–163 1007

    [7]

    Tembrello. T A 1995 Nucl. Instrum. Methods B 99 225Google Scholar

    [8]

    Sang J L, Chang M C, Boo K M, Ji Y B, Jae Y E, Myoung C C 2019 Bull. Korean Chem. Soc. 40 877Google Scholar

    [9]

    Ieshkin A, Nazarev A, Tatarintsev A, Kireev D 2020 Mater. Lett. 272 127829Google Scholar

    [10]

    Sumie K, Toyoda N, Yamada I 2013 Nucl. Instrum. MethodsB 307 290Google Scholar

    [11]

    Zeng X M, Pelenovich V, Ieshkin A 2019 Rapid Commun. Mass. Spectrom. 33 1449Google Scholar

    [12]

    Pelenovich V, Zeng X M, Rakhimov R, Zuo W B 2020 Mater. Lett. 264 127356Google Scholar

    [13]

    Zeng X M, Pelenovich V, Zuo W B, Xing B, Tolstogouzov A 2020 Beilstein J. Nanotechnol. 11 383Google Scholar

    [14]

    Yamada I, Matsuo J, Insepov Z, Akizuki M 1995 Nucl. Instrum. Methods B 106 165Google Scholar

    [15]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng. R 34 231Google Scholar

    [16]

    Prasalovich S, Popok V, Persson P, Campbell E E B 2005 J. Eur. Phys. D 36 79Google Scholar

    [17]

    曾晓梅, Vasiliy Pelenovich, Rakhim Rakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君 2020 物理学报 69 093601Google Scholar

    Zeng X M, Pelenovich V, Rakhimov R, Zuo W B, Xing B, Luo J B, Zhang X Y, Fu D J 2020 Acta Phys. Sin. 69 093601Google Scholar

    [18]

    Tolstoguzov A B, Drozdov M N, Ieshkin A E, Tatarintsev A A, Myakon’kikh A V, Belykh S F, Korobeishchiko, N G, Pelenovich V 2020 JETP Letters. 111 467Google Scholar

    [19]

    Merkle K J, Jager W 1981 Philos. Mag. A 44 741Google Scholar

    [20]

    Gapann J 1995 Sensor Actuator. A 51 37Google Scholar

    [21]

    Takeuchi D, Seki T, Aoki T, Matsuo J, Yamada I 1998 Mater. Chem. Phys. 54 76Google Scholar

    [22]

    Matsuo J, Seki T, Yamada I 2003 Nucl. Instrum. Methods B 206 838Google Scholar

    [23]

    Allen L P, Insepov Z, Fenner D B, Santeufemio, Brooks C W, Jones K S, Yamada I 2002 J. Appl. Phys. 92 3671Google Scholar

    [24]

    Momota S, NojiIi Y 2006 Nucl. Instrum. Methods B 242 247Google Scholar

    [25]

    Seki T, Kaneko T, Takeuchi D, Aoki T, Matsuo J, Insepov Z, Yamada I 1997 Nucl. Instrum. Methods B 121 498Google Scholar

    [26]

    Pelenovich V, Zeng X M, Ieshkin A, Chernysh V S, Tolstogouzov A B 2019 J. Surf. Invest. 13 344Google Scholar

    [27]

    VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵 2021 物理学报 70 053601Google Scholar

    Pelenovich V, Zeng X M, Luo J B, Rakhimov R, Zuo W B, Zhang X Y, Tian C X, Zhou C W, Fu D J, Yang B 2021 Acta Phys. Sin. 70 053601Google Scholar

    [28]

    Zeng X M, Pelenovich V, Liu C S, FuD J 2017 Chin. Phys. C 41 087003Google Scholar

    [29]

    Zeng X M, Pelenovich V, Zuo W B 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

  • 图 1  Si片经不同单一能量的Ar团簇垂直辐照前后的AFM表面形貌图 (a) 0 keV (initial); (b) 15 keV; (c) 8 keV; (d) 5 keV

    Figure 1.  AFM images of Si surface before and after Ar cluster bombardment at different single energies: (a) 0 keV (initial surface); (b) 15 keV; (c) 8 keV; (d) 5 keV.

    图 2  Si片经两种不同模式的Ar团簇垂直辐照后的AFM表面形貌图 (a) 0 keV (初始); (b) 15 keV + 8 keV + 5 keV多级能量(其离子剂量均为2 × 1016 cm–2); (c) 15 keV + 8 keV + 5 keV多级能量(其离子剂量分别为3 × 1016, 2 × 1016, 1 × 1016 cm–2)

    Figure 2.  AFM images of mechanically polished Si surface irradiated by two different modes of Ar cluster bombardment: (a) Initial surface; (b) 15 keV + 8 keV + 5 keV, consequently (all ion doses are 2 × 1016 cm–2); (c) 15 keV + 8 keV + 5 keV, consequently (ion doses respectively are 3 × 1016, 2 × 1016, 1 × 1016 cm–2)

    图 3  两种不同模式下, Ar团簇垂直辐照Si片后的PSD曲线

    Figure 3.  PSD curves of Ar clusters after vertical irradiation of Si wafer under two different modes

    图 4  Si片经不同能量的Ar团簇垂直辐照后的AFM表面形貌图 (a) 15 keV; (b) 5 keV; (c) 15 keV + 8 keV + 5 keV (离子剂量均为 2 × 1016 cm–2); (d) 15 keV + 8 keV + 5 keV (离子剂量分别为 3 × 1016, 2 × 1016、1 × 1016 cm–2); (e) 图(a)中孔洞的截面轮廓图; (f) 图(b)中孔洞的截面轮廓图; (g) 图(c)中孔洞的截面轮廓图; (h) 图(d)中孔洞的截面轮廓图

    Figure 4.  AFM images of mechanically polished Si surface after Ar cluster bombardment with different energy: (a) 15 keV; (b) 5 keV; (c) 15 keV + 8 keV + 5 keV, consequently (all ion doses are 2 × 1016 cm–2); (d) 15 keV + 8 keV + 5 keV, consequently (ion doses respectively are 3 × 1016, 2 × 1016, 1 × 1016 cm–2); (e) cross section of a crater from (a); (f) cross section of a crater from (b); (g) cross section of a crater from (c); (h) cross section of a crater from (d).

    表 1  Si片样品的平坦化参数(团簇能量、离子剂量、抛光时间)和平坦化结果(均方根表面粗糙度Rq)

    Table 1.  The smoothing parameters (cluster energy, ion dose, smoothing time) and root mean square roughness Rq.

    团簇能量
    /keV
    离子剂量
    /(ions·cm-2)
    抛光时间
    /min
    均方根粗
    糙度/nm
    0001.69
    156 × 1016101.64
    86 × 1016201.07
    56 × 1016251.10
    DownLoad: CSV

    表 2  Si片样品的平坦化参数(团簇能量、离子剂量、抛光时间)和平坦化结果(均方根表面粗糙度Rq)

    Table 2.  The smoothing parameters (cluster energy, ion dose, smoothing time) and root mean square roughness Rq.

    团簇能量/keV离子剂量/(ions·cm–2)抛光时间/min均方根粗糙度/nm
    0001.69
    15 + 8 + 52 × 1016 + 2 × 1016 + 2 × 10163 + 6 + 80.62
    15 + 8 + 53 × 1016 + 2 × 1016+1 × 10165 + 6 + 41.02
    DownLoad: CSV
  • [1]

    Matsuo J, Katsumata H, Minami E, Yamada I 2000 Nucl. Instrum. Methods B 161-163 952Google Scholar

    [2]

    Goto K, Matsuo J, Tada Y, Momiyama Y, Sugii T, Yamada I 1997 IEDM Tech. Digst. 471Google Scholar

    [3]

    Toyoda N, Hagiwara N, Matsuo J, Yamada I 1999 Nucl. Instrum. MethodsB 148 639Google Scholar

    [4]

    Yamada I, Takaoka G H 1993 Jpn. J. Appl. Phys. 32 2121Google Scholar

    [5]

    Qin W, Howson R P, Akizuki M, Matsuo J, Takaoka G, Yamada I 1998 Mater. Chem. Phys. 54 258Google Scholar

    [6]

    Seki T, Matsuo J, Yamada I 2000 Nucl. Instrum. Methods B 161–163 1007

    [7]

    Tembrello. T A 1995 Nucl. Instrum. Methods B 99 225Google Scholar

    [8]

    Sang J L, Chang M C, Boo K M, Ji Y B, Jae Y E, Myoung C C 2019 Bull. Korean Chem. Soc. 40 877Google Scholar

    [9]

    Ieshkin A, Nazarev A, Tatarintsev A, Kireev D 2020 Mater. Lett. 272 127829Google Scholar

    [10]

    Sumie K, Toyoda N, Yamada I 2013 Nucl. Instrum. MethodsB 307 290Google Scholar

    [11]

    Zeng X M, Pelenovich V, Ieshkin A 2019 Rapid Commun. Mass. Spectrom. 33 1449Google Scholar

    [12]

    Pelenovich V, Zeng X M, Rakhimov R, Zuo W B 2020 Mater. Lett. 264 127356Google Scholar

    [13]

    Zeng X M, Pelenovich V, Zuo W B, Xing B, Tolstogouzov A 2020 Beilstein J. Nanotechnol. 11 383Google Scholar

    [14]

    Yamada I, Matsuo J, Insepov Z, Akizuki M 1995 Nucl. Instrum. Methods B 106 165Google Scholar

    [15]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng. R 34 231Google Scholar

    [16]

    Prasalovich S, Popok V, Persson P, Campbell E E B 2005 J. Eur. Phys. D 36 79Google Scholar

    [17]

    曾晓梅, Vasiliy Pelenovich, Rakhim Rakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君 2020 物理学报 69 093601Google Scholar

    Zeng X M, Pelenovich V, Rakhimov R, Zuo W B, Xing B, Luo J B, Zhang X Y, Fu D J 2020 Acta Phys. Sin. 69 093601Google Scholar

    [18]

    Tolstoguzov A B, Drozdov M N, Ieshkin A E, Tatarintsev A A, Myakon’kikh A V, Belykh S F, Korobeishchiko, N G, Pelenovich V 2020 JETP Letters. 111 467Google Scholar

    [19]

    Merkle K J, Jager W 1981 Philos. Mag. A 44 741Google Scholar

    [20]

    Gapann J 1995 Sensor Actuator. A 51 37Google Scholar

    [21]

    Takeuchi D, Seki T, Aoki T, Matsuo J, Yamada I 1998 Mater. Chem. Phys. 54 76Google Scholar

    [22]

    Matsuo J, Seki T, Yamada I 2003 Nucl. Instrum. Methods B 206 838Google Scholar

    [23]

    Allen L P, Insepov Z, Fenner D B, Santeufemio, Brooks C W, Jones K S, Yamada I 2002 J. Appl. Phys. 92 3671Google Scholar

    [24]

    Momota S, NojiIi Y 2006 Nucl. Instrum. Methods B 242 247Google Scholar

    [25]

    Seki T, Kaneko T, Takeuchi D, Aoki T, Matsuo J, Insepov Z, Yamada I 1997 Nucl. Instrum. Methods B 121 498Google Scholar

    [26]

    Pelenovich V, Zeng X M, Ieshkin A, Chernysh V S, Tolstogouzov A B 2019 J. Surf. Invest. 13 344Google Scholar

    [27]

    VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵 2021 物理学报 70 053601Google Scholar

    Pelenovich V, Zeng X M, Luo J B, Rakhimov R, Zuo W B, Zhang X Y, Tian C X, Zhou C W, Fu D J, Yang B 2021 Acta Phys. Sin. 70 053601Google Scholar

    [28]

    Zeng X M, Pelenovich V, Liu C S, FuD J 2017 Chin. Phys. C 41 087003Google Scholar

    [29]

    Zeng X M, Pelenovich V, Zuo W B 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

  • [1] Vasiliy Pelenovich, Zeng Xiao-Mei, Luo Jin-Bao, Rakhim Rakhimov, Zuo Wen-Bin, Zhang Xiang-Yu, Tian Can-Xin, Zou Chang-Wei, Fu De-Jun, Yang Bing. Double-step gas cluster ion beam smoothing. Acta Physica Sinica, 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [2] Zeng Xiao-Mei, Vasiliy Pelenovich, Rakhim Rakhimov, Zuo Wen-Bin, Xing Bin, Luo Jin-Bao, Zhang Xiang-Yu, Fu De-Jun. Design and application of gas cluster accelerator for surface smoothing and nanostructures formation. Acta Physica Sinica, 2020, 69(9): 093601. doi: 10.7498/aps.69.20191990
    [3] Wang Jian-Guo, Yang Song-Lin, Ye Yong-Hong. Effect of silver film roughness on imaging property of BaTiO3 microsphere. Acta Physica Sinica, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [4] Zhang Ran, Chang Qing, Li Hua. Molecular dynamics simulations on scattering of Ar molecules on smooth and rough surfaces. Acta Physica Sinica, 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [5] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Yuan Ning-Yi, Xu Duo. Wetting behaviors of the molten silicon on graphite surface. Acta Physica Sinica, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [7] Song Yan-Song, Yang Jian-Feng, Li Fu, Ma Xiao-Long, Wang Hong. Method of controlling optical surface roughness based on stray light requirements. Acta Physica Sinica, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [8] Song Yong-Feng, Li Xiong-Bing, Shi Yi-Wei, Ni Pei-Jun. Effects of surface roughness on diffuse ultrasonic backscatter in the solids. Acta Physica Sinica, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [9] Wang Yu-Xiang, Chen Shuo. Drops on microstructured surfaces: A numerical study using many-body dissipative particle dynamics. Acta Physica Sinica, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [10] Chen Su-Ting, Hu Hai-Feng, Zhang Chuang. Surface roughness modeling based on laser speckle imaging. Acta Physica Sinica, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [11] Ma Jing-Jie, Xia Hui, Tang Gang. Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise. Acta Physica Sinica, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [13] Cao Hong, Huang Yong, Chen Su-Fen, Zhang Zhan-Wen, Wei Jian-Jun. Influence of pulse tapping technology on surface roughness of polyimide capsule. Acta Physica Sinica, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [14] Huang Xiao-Yu, Cheng Xin-Lu, Xu Jia-Jing, Wu Wei-Dong. Atomistic study of deposition process of Be thin film on Be substrate. Acta Physica Sinica, 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [15] Ma Hai-Min, Hong Liang, Yin Yi, Xu Jian, Ye Hui. Preparation and property of super-hydrophilic SiO2-TiO2 nano-particle layer. Acta Physica Sinica, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [16] Ding Yan-Li, Zhu Zhi-Li, Gu Jin-Hua, Shi Xin-Wei, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [17] Gu Jin-Hua, Ding Yan-Li, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. A spectroscopic ellipsometry study of the abnormal scaling behavior of high-rate-deposited microcrystalline silicon films by VHF-PECVD technique. Acta Physica Sinica, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [18] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Zhou Yu-Qin, Wu Zhong-Hua, Chen Xing. Studies on surface roughness and growth mechanisms of microcrystalline silicon films by grazing incidence X-ray reflectivity. Acta Physica Sinica, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [19] Hou Hai-Hong, Sun Xi-Lian, Shen Yan-Ming, Shao Jian-Da, Fan Zheng-Xiu, Yi Kui. Roughness and light scattering properties of ZrO2 thin films deposited by electron beam evaporation. Acta Physica Sinica, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [20] CHENG LU, SIU GUEI-GU. "CORE RING-RATIO" METHOD FOR SURFACE ROUGHNESS MEASUREMENT WITH INCOHERENT LIGHT SOURCE. Acta Physica Sinica, 1990, 39(1): 10-17. doi: 10.7498/aps.39.10
Metrics
  • Abstract views:  4023
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2020
  • Accepted Date:  28 March 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回