Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulations on scattering of Ar molecules on smooth and rough surfaces

Zhang Ran Chang Qing Li Hua

Zhang Ran, Chang Qing, Li Hua. Molecular dynamics simulations on scattering of Ar molecules on smooth and rough surfaces. Acta Phys. Sin., 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
Citation:

Molecular dynamics simulations on scattering of Ar molecules on smooth and rough surfaces

Zhang Ran, Chang Qing, Li Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular dynamics method is used to investigate the scattering characteristics of Ar molecule on smooth and rough Pt(100) surface. In this paper, a velocity sampling method is proposed to obtain the tangential momentum accommodation coefficients (TMACs) and the sticking probabilities of gas molecules on smooth and rough surface under different temperature conditions. The results show that the TMAC and the sticking probability decrease with increasing temperature under smooth surface condition. The results of our work are in excellent agreement with the results of the reference for a three-dimensional gas flow in a nanochannel. Unlike the scenario of smooth surfaces, the roughness of rough surfaces greatly promotes the accommodation of tangential momentum between the gas molecules and surfaces. When the roughness becoming larger, the TMAC approaches to 1.0 and the sensitivity to temperature decreases gradually. Unlike the relationship between TMAC and roughness, although the sticking probability of gas molecules increases with roughness increasing, its dependence on temperature does not change. Furthermore, the beam method where the incident velocity and angle are determined is used to quantitatively analyze the scattering characteristics of gas molecules on different surfaces. According to the number of collisions between gas molecule and the surface, we classify the scattering of gas molecules on a smooth surface into two types: single collision scattering and multiple collision scattering. For those gas molecules that experience one collision, their average tangential momentum decreases to a certain extent, however, the gas molecules scattered after multiple collisions tend to maintain the original tangential momentum. For gas molecules reflected from the smooth surface, their velocity distribution exhibits a typical bimodal distribution. The position of the first peak appears at the incident velocity value, and the position of the second peak appears at a velocity value of zero. Regarding rough surfaces, the existence of roughness changes the mode of exchange of momentum and energy between gas molecules and walls, resulting in a significant decrease in the average tangential momentum of gas molecules scattered on rough surfaces. Besides, the more the gas molecules colliding on the surface, the more severe the energy loss after scattering will be. For gas molecules reflected from the rough surfaces, their velocity distribution conforms to the characteristics of Gaussian distribution.
      PACS:
      34.35.+a(Interactions of atoms and molecules with surfaces)
      47.11.Mn(Molecular dynamics methods)
      34.50.-s(Scattering of atoms and molecules)
      47.45.Gx(Slip flows and accommodation)
      Corresponding author: Li Hua, zr07024221@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472004).
    [1]

    Karniadakis G, Beskok A, Aluru N 2005 Micro Flows and Nano Flows: Fundamentals and Simulation(New York: Springer) pp2-8

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Padilla J F, Boyd I D 2009 J. Thermo. Phys. Heat Tr. 23 96

    [4]

    Rovenskaya O I 2015 Int. J. Heat Mass Trans. 89 1024

    [5]

    Hadj Nacer M, Graur I, Perrier P, Molans J G, Wuest M 2014 J. Vac. Sci. Technol. A 32 021621

    [6]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) p121 (in Chinese) [沈青 2003 稀薄气体动力学(北京: 国防工业出版社) 第121页]

    [7]

    Hurlbut F C 1997 Adv. Mech. 27 549 (in Chinese) [Hurlbut F C 1997 力学进展 27 549]

    [8]

    Maxwell J C 1879 Phil. Trans. R. Soc. Lond. 170 231

    [9]

    Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids A 1 1588

    [10]

    Lockerby D A, Reese J M, Emerson D R, Barber R W 2004 Phys. Rev. E 70 017303

    [11]

    Pan L S, Liu G R, Lam K Y 1999 J. Micromech. Microeng. 9 89

    [12]

    Wu L, Bogy D B 2003 Trans. ASME J. Tribol. 125 558

    [13]

    Lockerby D A, Reese J M 2008 J. Fluid. Mech. 604 235

    [14]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid Nanofluid 10 607

    [15]

    Weng C I, Li W L, Hwang C C 1999 Nanotechnology 10 373

    [16]

    Beskok A, Karniadakis G E 1999 Microscale Thermophys. Eng. 3 43

    [17]

    Zhang W M, Meng G, Wei X Y 2012 Microfluid Nanofluid 13 845

    [18]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [19]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [20]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [21]

    Yamamoto K 2002 JSME Int. J. Ser. B 45 788

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [25]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys. Rev. E 81 011203

    [26]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [27]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [28]

    Sun J, Li Z X 2011 Heat Transfer Eng. 32 658

    [29]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [30]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [31]

    Chirita V, Pailthorpe B A, Collins R E 1993 Appl. Phys. 26 133

    [32]

    Chirita V, Pailthorpe B A, Collins R E 1997 Nucl. Instrum. Meth. B 4 12

    [33]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluids Eng. 129 31

    [34]

    Pham T T, To Q D, Lauriat G, Leonard C 2012 Phys. Rev. E 86 051201

    [35]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A 2014 Comput. Fluids 97 31

    [36]

    Kuscer I 1974 Proceeding of the Ninth International Symposium Goettengen, Germany, July 15-20, 1974 p21

    [37]

    Maruyama S 2000 Advances in Numerical Heat Transfer (Vol.2) (Boca Raton: CRC Press) pp189

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York: Cambridge University Press) pp4-5

    期刊类型引用(1)

    1. 郭亭山,梁志远,赵钦新. 超临界CO_2材料腐蚀过程动力学与产物热力学研究. 西安交通大学学报. 2023(12): 136-145 . 百度学术

    其他类型引用(1)

  • [1]

    Karniadakis G, Beskok A, Aluru N 2005 Micro Flows and Nano Flows: Fundamentals and Simulation(New York: Springer) pp2-8

    [2]

    Verbridge S S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112

    [3]

    Padilla J F, Boyd I D 2009 J. Thermo. Phys. Heat Tr. 23 96

    [4]

    Rovenskaya O I 2015 Int. J. Heat Mass Trans. 89 1024

    [5]

    Hadj Nacer M, Graur I, Perrier P, Molans J G, Wuest M 2014 J. Vac. Sci. Technol. A 32 021621

    [6]

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) p121 (in Chinese) [沈青 2003 稀薄气体动力学(北京: 国防工业出版社) 第121页]

    [7]

    Hurlbut F C 1997 Adv. Mech. 27 549 (in Chinese) [Hurlbut F C 1997 力学进展 27 549]

    [8]

    Maxwell J C 1879 Phil. Trans. R. Soc. Lond. 170 231

    [9]

    Ohwada T, Sone Y, Aoki K 1989 Phys. Fluids A 1 1588

    [10]

    Lockerby D A, Reese J M, Emerson D R, Barber R W 2004 Phys. Rev. E 70 017303

    [11]

    Pan L S, Liu G R, Lam K Y 1999 J. Micromech. Microeng. 9 89

    [12]

    Wu L, Bogy D B 2003 Trans. ASME J. Tribol. 125 558

    [13]

    Lockerby D A, Reese J M 2008 J. Fluid. Mech. 604 235

    [14]

    Li Q, He Y L, Tang G H, Tao W Q 2011 Microfluid Nanofluid 10 607

    [15]

    Weng C I, Li W L, Hwang C C 1999 Nanotechnology 10 373

    [16]

    Beskok A, Karniadakis G E 1999 Microscale Thermophys. Eng. 3 43

    [17]

    Zhang W M, Meng G, Wei X Y 2012 Microfluid Nanofluid 13 845

    [18]

    Cao B Y, Sun J, Chen M, Guo Z Y 2009 Int. J. Mol. Sci. 10 4638

    [19]

    Markvoort A J, Hilbers P A J, Nedea S V 2005 Phys. Rev. E 71 066702

    [20]

    Arya G, Chang H C, Maginn E J 2003 Mol. Simul. 29 697

    [21]

    Yamamoto K 2002 JSME Int. J. Ser. B 45 788

    [22]

    Cao B Y, Chen M, Guo Z Y 2005 Appl. Phys. Lett. 86 091905

    [23]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Int. J. Eng. Sci. 44 927

    [25]

    Spijker P, Markvoort A J, Nedea S V, Hilbers P A J 2010 Phys. Rev. E 81 011203

    [26]

    Sun J, Li Z X 2008 Mol. Phys. 106 2325

    [27]

    Sun J, Li Z X 2010 Comput. Fluids 39 1645

    [28]

    Sun J, Li Z X 2011 Heat Transfer Eng. 32 658

    [29]

    Barisik M, Beskok A 2011 Microfluid Nanofluid 11 269

    [30]

    Barisik M, Beskok A 2012 Microfluid Nanofluid 13 789

    [31]

    Chirita V, Pailthorpe B A, Collins R E 1993 Appl. Phys. 26 133

    [32]

    Chirita V, Pailthorpe B A, Collins R E 1997 Nucl. Instrum. Meth. B 4 12

    [33]

    Finger G W, Kapat J S, Bhattacharya A 2007 J. Fluids Eng. 129 31

    [34]

    Pham T T, To Q D, Lauriat G, Leonard C 2012 Phys. Rev. E 86 051201

    [35]

    Reinhold J, Veltzke T, Wells B, Schneider J, Meierhofer F, Colombi Ciacchi L, Chaffee A 2014 Comput. Fluids 97 31

    [36]

    Kuscer I 1974 Proceeding of the Ninth International Symposium Goettengen, Germany, July 15-20, 1974 p21

    [37]

    Maruyama S 2000 Advances in Numerical Heat Transfer (Vol.2) (Boca Raton: CRC Press) pp189

    [38]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (New York: Cambridge University Press) pp4-5

  • [1] Luo Jin-Bao, Vasiliy Pelenovich, Zeng Xiao-Mei, Hao Zhong-Hua, Zhang Xiang-Yu, Zuo Wen-Bin, Fu De-Jun. Effect of ion dose ratio on multilevel energy smoothing model of gas cluster. Acta Physica Sinica, 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [2] Zhang Ye, Zhang Ran, Chang Qing, Li Hua. Surface effects on Couette gas flows in nanochannels. Acta Physica Sinica, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [3] Zhang Ran, Xie Wen-Jia, Chang Qing, Li Hua. Molecular dynamics simulations of surface effects on Couette gas flows in nanochannels. Acta Physica Sinica, 2018, 67(8): 084701. doi: 10.7498/aps.67.20172706
    [4] Wang Jian-Guo, Yang Song-Lin, Ye Yong-Hong. Effect of silver film roughness on imaging property of BaTiO3 microsphere. Acta Physica Sinica, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [5] Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Yuan Ning-Yi, Xu Duo. Wetting behaviors of the molten silicon on graphite surface. Acta Physica Sinica, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] Song Yan-Song, Yang Jian-Feng, Li Fu, Ma Xiao-Long, Wang Hong. Method of controlling optical surface roughness based on stray light requirements. Acta Physica Sinica, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] Song Yong-Feng, Li Xiong-Bing, Shi Yi-Wei, Ni Pei-Jun. Effects of surface roughness on diffuse ultrasonic backscatter in the solids. Acta Physica Sinica, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [8] Wang Yu-Xiang, Chen Shuo. Drops on microstructured surfaces: A numerical study using many-body dissipative particle dynamics. Acta Physica Sinica, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [9] Chen Su-Ting, Hu Hai-Feng, Zhang Chuang. Surface roughness modeling based on laser speckle imaging. Acta Physica Sinica, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [10] Li Zi-Zheng, Yang Hai-Gui, Wang Xiao-Yi, Gao Jin-Song. Investigations of high-quality aluminum film with large-area uniformity for large-size echelle grating. Acta Physica Sinica, 2014, 63(15): 157801. doi: 10.7498/aps.63.157801
    [11] Ma Jing-Jie, Xia Hui, Tang Gang. Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise. Acta Physica Sinica, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] Cao Hong, Huang Yong, Chen Su-Fen, Zhang Zhan-Wen, Wei Jian-Jun. Influence of pulse tapping technology on surface roughness of polyimide capsule. Acta Physica Sinica, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [13] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [14] Huang Xiao-Yu, Cheng Xin-Lu, Xu Jia-Jing, Wu Wei-Dong. Atomistic study of deposition process of Be thin film on Be substrate. Acta Physica Sinica, 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [15] Ma Hai-Min, Hong Liang, Yin Yi, Xu Jian, Ye Hui. Preparation and property of super-hydrophilic SiO2-TiO2 nano-particle layer. Acta Physica Sinica, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [16] Ding Yan-Li, Zhu Zhi-Li, Gu Jin-Hua, Shi Xin-Wei, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [17] Gu Jin-Hua, Ding Yan-Li, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. A spectroscopic ellipsometry study of the abnormal scaling behavior of high-rate-deposited microcrystalline silicon films by VHF-PECVD technique. Acta Physica Sinica, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [18] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Zhou Yu-Qin, Wu Zhong-Hua, Chen Xing. Studies on surface roughness and growth mechanisms of microcrystalline silicon films by grazing incidence X-ray reflectivity. Acta Physica Sinica, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [19] Hou Hai-Hong, Sun Xi-Lian, Shen Yan-Ming, Shao Jian-Da, Fan Zheng-Xiu, Yi Kui. Roughness and light scattering properties of ZrO2 thin films deposited by electron beam evaporation. Acta Physica Sinica, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [20] LI MING-HUA, YU GUANG-HUA, JIANG HONG-WEI, CAI JIAN-WANG, ZHU FENG-WU. EFFECT OF Ta AND Ta/Cu BUFFERS ON THE EXCHANGE BIAS FIELD OFNiFe/FeMn BILAYERS. Acta Physica Sinica, 2001, 50(11): 2230-2234. doi: 10.7498/aps.50.2230
  • 期刊类型引用(1)

    1. 郭亭山,梁志远,赵钦新. 超临界CO_2材料腐蚀过程动力学与产物热力学研究. 西安交通大学学报. 2023(12): 136-145 . 百度学术

    其他类型引用(1)

Metrics
  • Abstract views:  7389
  • PDF Downloads:  169
  • Cited By: 2
Publishing process
  • Received Date:  29 August 2018
  • Accepted Date:  27 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回