Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wetting behaviors of the molten silicon on graphite surface

Cheng Guang-Gui Zhang Zhong-Qiang Ding Jian-Ning Yuan Ning-Yi Xu Duo

Citation:

Wetting behaviors of the molten silicon on graphite surface

Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Yuan Ning-Yi, Xu Duo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A theory which was proposed by Scheid et al. in 2010 (Scheid B, van Nierop E A, Stone H A 2010 Appl. Phys. Lett. 97 171906) suggests that very thin ribbons of molten material can be drawn out of a melt by adequately tuning the temperature gradient along the dynamic meniscus that connects the static meniscus at the melting bath to the region of the drawn flat film. Based on this theory, one-step manufacturing ultra-thin silicon wafer by pulling out from a molten silicon bath has attracted considerable attention in recent year due to its many attractive performances such as low cost, simple process, etc. By using this method, solar cell can have intensive applications due to its low cost and stable output efficiency. The results show that the thermal capillarity effect plays a great role in preparing the ultra-thin silicon. The thickness of the silicon wafer is sensitive to the capillary length and the strength of the surface tension variation as well. In order to reveal the mechanism for the effect of thermal capillary on the fabrication of ultra-thin silicon wafer, a thermal capillary finite element model is developed for the horizontal ribbon growth system to study the wetting behaviors of molten silicon on graphite. The mathematical model is established and simulated by using the commercial software; several parameters such as mass, viscous stress and capillary force are calculated. The wetting processes are tested by changing surface roughness (Ra=0.721 m and Ra=0.134 m), system temperatures (17371744 K), and durations (1030 s) at constant temperature on a high-temperature, high-vacuum contact angle measurement instrument. It is found that the wetting angle of silicon droplet on graphite decreases with surface roughness and temperature increasing; the wetting angle comes down with time going by (lasting 30 s) at constant temperature, which is consistent with the theoretical result of Wenzel. The influence of surface tension on wetting process is studied by analyzing the distributions of pressure and velocity field. It is shown that the differential pressure at the solid-liquid interfaces, induced by thermal capillary effect, decreases in the wetting process and reaches a balance which prevents the droplet from being wetted. At T=1700 K, the wetting angle and the shape of droplet change quickly within 0.4 ms and eventually become stable after 5 ms as shown in the simulation. The spreading length L and droplet height h at the steady-state are calculated with considering the influence of droplet radius on the wetting process. The results show that both L and h are directly related to the steady-state of wetting angle. The surface tension dominates the wetting process for droplet radius R0 5mm; while for R0 5 mm, the wetting process is dominated by gravity.
      Corresponding author: Cheng Guang-Gui, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn ; Ding Jian-Ning, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51335002), the Key Support Projects of Strategic Emerging Industries in Jiangsu Province, China (Grant No. 2015-318), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Wang A, Zhao J, Wenham S R, Green M A 1996 Prog. Photovolt. Res. Appl. 4 55

    [2]

    Green M A 2009 Prog. Photovolt. Res. Appl. 17 183

    [3]

    Zhang Y N, Stokes N, Jia B H, Fan S H, Gu M 2014 Sci. Rep. 4 4939

    [4]

    Ren Z P, Zhang N L, Luo R 1987 J. Eng.Thermophys. 8 70 (in Chinese)[任泽霈, 张能力, 罗锐1987工程热物理8 70]

    [5]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [6]

    Liu C S 2008 J. Qingdao Technol. Univ. 29 9 (in Chinese)[刘长松2008青岛理工大学学报29 9]

    [7]

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202 (in Chinese)[王飞, 彭岚, 张全壮, 刘佳2015物理学报64 140202]

    [8]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 J.Cryst. Growth 355 129

    [9]

    Scheid B, van Nierop E A, Stone H A 2010 Appl. Phys. Lett. 97 171906

    [10]

    Scheid B, van Nierop E A, Stone H A 2012 Phys. Fluids 24 032107

    [11]

    Liu Z H, Jin W Q, Pan Z L, Cheng N 1998 J.Inorg. Mater. 13 113 (in Chinese)[刘照华, 金蔚青, 潘志雷, 程宁1998无机材料学报13 113]

    [12]

    Chen S X, Li M W 2007 J. Inorg. Mater. 22 15 (in Chinese)[陈淑仙, 李明伟2007无机材料学报22 15]

    [13]

    Yu Q H, Liu L J, Geng A N, Jiang B W, Li Z Y, Xu Y Y, Xue K M 2014 J. Cryst. Growth 385 49

    [14]

    Ranjan S, Balaji S, Panella R A, Ydstie B E 2011 Comput. Chem. Eng. 35 1439

    [15]

    Shockley W 1962 US Patent 3031275

    [16]

    Jeong H M, Chung H S, Lee T W 2010 J. Cryst. Growth 312 555

    [17]

    Hess U, Pichon P Y, Seren S, Schöneckerb A, Hahna G 2013 Sol. Energ. Mat. Sol. C 117 471

    [18]

    Xu D, Ding J N, Yuan N Y, Zhang Z Q, Cheng G G, Guo L Q, Ling Z Y 2015 Acta Phys. Sin. 64 116801 (in Chinese)[许多, 丁建宁, 袁宁一, 张忠强, 程广贵, 郭立强, 凌智勇2015物理学报64 116801]

    [19]

    Legendre D, Magnaudet J, Mougin G 2003 J. Fluid Mech. 497 133

    [20]

    Merle A, Legendre D, Magnaudet J 2005 J. Fluid Mech. 532 53

    [21]

    Bretherton F P 1961 J. Fluid Mech. 10 166

  • [1]

    Wang A, Zhao J, Wenham S R, Green M A 1996 Prog. Photovolt. Res. Appl. 4 55

    [2]

    Green M A 2009 Prog. Photovolt. Res. Appl. 17 183

    [3]

    Zhang Y N, Stokes N, Jia B H, Fan S H, Gu M 2014 Sci. Rep. 4 4939

    [4]

    Ren Z P, Zhang N L, Luo R 1987 J. Eng.Thermophys. 8 70 (in Chinese)[任泽霈, 张能力, 罗锐1987工程热物理8 70]

    [5]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [6]

    Liu C S 2008 J. Qingdao Technol. Univ. 29 9 (in Chinese)[刘长松2008青岛理工大学学报29 9]

    [7]

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202 (in Chinese)[王飞, 彭岚, 张全壮, 刘佳2015物理学报64 140202]

    [8]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 J.Cryst. Growth 355 129

    [9]

    Scheid B, van Nierop E A, Stone H A 2010 Appl. Phys. Lett. 97 171906

    [10]

    Scheid B, van Nierop E A, Stone H A 2012 Phys. Fluids 24 032107

    [11]

    Liu Z H, Jin W Q, Pan Z L, Cheng N 1998 J.Inorg. Mater. 13 113 (in Chinese)[刘照华, 金蔚青, 潘志雷, 程宁1998无机材料学报13 113]

    [12]

    Chen S X, Li M W 2007 J. Inorg. Mater. 22 15 (in Chinese)[陈淑仙, 李明伟2007无机材料学报22 15]

    [13]

    Yu Q H, Liu L J, Geng A N, Jiang B W, Li Z Y, Xu Y Y, Xue K M 2014 J. Cryst. Growth 385 49

    [14]

    Ranjan S, Balaji S, Panella R A, Ydstie B E 2011 Comput. Chem. Eng. 35 1439

    [15]

    Shockley W 1962 US Patent 3031275

    [16]

    Jeong H M, Chung H S, Lee T W 2010 J. Cryst. Growth 312 555

    [17]

    Hess U, Pichon P Y, Seren S, Schöneckerb A, Hahna G 2013 Sol. Energ. Mat. Sol. C 117 471

    [18]

    Xu D, Ding J N, Yuan N Y, Zhang Z Q, Cheng G G, Guo L Q, Ling Z Y 2015 Acta Phys. Sin. 64 116801 (in Chinese)[许多, 丁建宁, 袁宁一, 张忠强, 程广贵, 郭立强, 凌智勇2015物理学报64 116801]

    [19]

    Legendre D, Magnaudet J, Mougin G 2003 J. Fluid Mech. 497 133

    [20]

    Merle A, Legendre D, Magnaudet J 2005 J. Fluid Mech. 532 53

    [21]

    Bretherton F P 1961 J. Fluid Mech. 10 166

  • [1] Yu Tian-Lin, Fan Feng-Xian. Investigation of granular capillary rising under vertical vibration. Acta Physica Sinica, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [2] Luo Jin-Bao, Vasiliy Pelenovich, Zeng Xiao-Mei, Hao Zhong-Hua, Zhang Xiang-Yu, Zuo Wen-Bin, Fu De-Jun. Effect of ion dose ratio on multilevel energy smoothing model of gas cluster. Acta Physica Sinica, 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [3] Vasiliy Pelenovich, Zeng Xiao-Mei, Luo Jin-Bao, Rakhim Rakhimov, Zuo Wen-Bin, Zhang Xiang-Yu, Tian Can-Xin, Zou Chang-Wei, Fu De-Jun, Yang Bing. Double-step gas cluster ion beam smoothing. Acta Physica Sinica, 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [4] Zhang Ran, Chang Qing, Li Hua. Molecular dynamics simulations on scattering of Ar molecules on smooth and rough surfaces. Acta Physica Sinica, 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [5] Wang Jian-Guo, Yang Song-Lin, Ye Yong-Hong. Effect of silver film roughness on imaging property of BaTiO3 microsphere. Acta Physica Sinica, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [6] Song Yan-Song, Yang Jian-Feng, Li Fu, Ma Xiao-Long, Wang Hong. Method of controlling optical surface roughness based on stray light requirements. Acta Physica Sinica, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] Song Yong-Feng, Li Xiong-Bing, Shi Yi-Wei, Ni Pei-Jun. Effects of surface roughness on diffuse ultrasonic backscatter in the solids. Acta Physica Sinica, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [8] Wang Yu-Xiang, Chen Shuo. Drops on microstructured surfaces: A numerical study using many-body dissipative particle dynamics. Acta Physica Sinica, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [9] Chen Su-Ting, Hu Hai-Feng, Zhang Chuang. Surface roughness modeling based on laser speckle imaging. Acta Physica Sinica, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [10] Xu Duo, Ding Jian-Ning, Yuan Ning-Yi, Zhang Zhong-Qiang, Chen Guang-Gui, Guo Li-Qiang, Ling Zhi-Yong. Effect of temperature field and different walls on the wetting angle of molten silicon. Acta Physica Sinica, 2015, 64(11): 116801. doi: 10.7498/aps.64.116801
    [11] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [12] Ma Jing-Jie, Xia Hui, Tang Gang. Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise. Acta Physica Sinica, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [13] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [14] Cao Hong, Huang Yong, Chen Su-Fen, Zhang Zhan-Wen, Wei Jian-Jun. Influence of pulse tapping technology on surface roughness of polyimide capsule. Acta Physica Sinica, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [15] Huang Xiao-Yu, Cheng Xin-Lu, Xu Jia-Jing, Wu Wei-Dong. Atomistic study of deposition process of Be thin film on Be substrate. Acta Physica Sinica, 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [16] Ma Hai-Min, Hong Liang, Yin Yi, Xu Jian, Ye Hui. Preparation and property of super-hydrophilic SiO2-TiO2 nano-particle layer. Acta Physica Sinica, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [17] Ding Yan-Li, Zhu Zhi-Li, Gu Jin-Hua, Shi Xin-Wei, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. Effect of deposition rate on the scaling behavior of microcrystalline silicon films prepared by very high frequency-plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [18] Gu Jin-Hua, Ding Yan-Li, Yang Shi-E, Gao Xiao-Yong, Chen Yong-Sheng, Lu Jing-Xiao. A spectroscopic ellipsometry study of the abnormal scaling behavior of high-rate-deposited microcrystalline silicon films by VHF-PECVD technique. Acta Physica Sinica, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [19] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Zhou Yu-Qin, Wu Zhong-Hua, Chen Xing. Studies on surface roughness and growth mechanisms of microcrystalline silicon films by grazing incidence X-ray reflectivity. Acta Physica Sinica, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [20] Hou Hai-Hong, Sun Xi-Lian, Shen Yan-Ming, Shao Jian-Da, Fan Zheng-Xiu, Yi Kui. Roughness and light scattering properties of ZrO2 thin films deposited by electron beam evaporation. Acta Physica Sinica, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
Metrics
  • Abstract views:  7181
  • PDF Downloads:  302
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2016
  • Accepted Date:  08 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回