Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures

Song Zhi-Jun Lü Zhao-Zheng Dong Quan Feng Jun-Ya Ji Zhong-Qing Jin Yong Lü Li

Citation:

Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures

Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li
PDF
HTML
Get Citation
  • Traditionally, electrical noise is considered as an interference source for low level measurements. Shot noise is the current fluctuation caused by the discreteness of electrons. In a mesoscopic system, shot noise is sensitive to the interaction of charge carriers. Since the 20th century, it has been found that the shot noise measurement can provide the information about quantum fluctuations, which cannot be measured with traditional transport measurement method. It is usually difficult to measure weak noise signal at ultra- low temperature due to technical difficulties. It is necessary to mount a cryogenic preamplifier close to the sample to improve signal-to-noise ratio and to increase the bandwidth. Therefore, the ultra-low background noise and the power consumption of the amplifier should be used. In this report we present a shot noise measurement system at dilution refrigerator temperatures. We also introduce and analyze the noise model of our shot noise measurement system. With customized high electron mobility transistors, we make a series of ultra-low noise cryogenic preamplifiers. All the electronic components of the amplifier are packed into a shielding box, which makes the installation of the cryogenic amplifier more convenient. The amplifier is mounted on the 4 K stage of a dry dilution refrigerator and the total power consumption is less than 0.754 mW. The gains and the background noises of the amplifiers are calibrated with the Johnson-Nyquist noise of the combination of a superconducting resistor and a normal resistor at various temperatures. The measured input referred noise voltage can be as low as 0.25 nV/√Hz. In this report, the performance of the system is demonstrated by the shot noise measurement of an Al/AlOx/Al tunnel junction at various temperatures. Above the superconducting transition temperature of aluminum, the measured Fano factor of the system is very close to 1, which is in a good agreement with the theory prediction.
      Corresponding author: Ji Zhong-Qing, zji@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0300600) and the National Natural Science Foundation of China (Grant Nos. 11574379, 11174357).
    [1]

    Landauer R 1998 Nature 392 658Google Scholar

    [2]

    Schottky W 1918 Ann. Phys. 57 541

    [3]

    Beenakker C, Schönenberger C 2003 Phys. Today 56 37

    [4]

    Blanter Y M, Büttiker M 2000 Phys. Rep. 336 1Google Scholar

    [5]

    Lesovik G B 1989 JETP Lett. 49 513

    [6]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901Google Scholar

    [7]

    Beenakker C W J, Büttiker M 1992 Phys. Rev. B 46 1889Google Scholar

    [8]

    Reznikov M, Heiblum M, Shtrikman H, Mahalu D 1995 Phys. Rev. Lett. 75 3340Google Scholar

    [9]

    Kumar A, Saminadayar L, Glattli D C 1996 Phys. Rev. Lett. 76 2778Google Scholar

    [10]

    Picciotto R D, Reznikov M, Heiblum M, Umansky V, Bunin G, Mahalu D 1997 Nature 389 162Google Scholar

    [11]

    Saminadayar L, Glattli D C, Jin Y, Etienne B 1997 Phys. Rev. Lett. 79 2526Google Scholar

    [12]

    Reznikov M, de Picciotto R, Griffiths T G, Heiblum M, Umansky V 1999 Nature 399 238Google Scholar

    [13]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [14]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [15]

    Zhang H, Liu C X, Gazibegovic S, Xu D, Logan J A, Wang G, van Loo N, Bommer J D S, de Moor M W A, Car D, Op Het Veld R L M, van Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrom C J, Bakkers E, Sarma S D, Kouwenhoven L P 2018 Nature 556 74Google Scholar

    [16]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [17]

    Sbierski B, Pohl G, Bergholtz E J, Brouwer P W 2014 Phys. Rev. Lett. 113 026602Google Scholar

    [18]

    Trescher M, Sbierski B, Brouwer P W, Bergholtz E J 2015 Phys. Rev. B 91 115135Google Scholar

    [19]

    Matveeva P G, Aristov D N, Meidan D, Gutman D B 2017 Phys. Rev. B 96 165406Google Scholar

    [20]

    Yang Y L, Bai C X, Xu X G, Jiang Y 2018 Nanotechnology 29 074002Google Scholar

    [21]

    Golub A, Horovitz B 2011 Phys. Rev. B 83 153415Google Scholar

    [22]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002Google Scholar

    [23]

    Soller H, Komnik A 2014 Physica E 63 99Google Scholar

    [24]

    Bolech C J, Demler E 2008 Physica B 403 994Google Scholar

    [25]

    Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W 2011 Phys. Rev. Lett. 106 057001Google Scholar

    [26]

    Lü H F, Guo Z, Ke S S, Guo Y, Zhang H W 2015 J. Appl. Phys. 117 164312Google Scholar

    [27]

    DiCarlo L, Zhang Y, McClure D T, Marcus C M, Pfeiffer L N, West K W 2006 Rev. Sci. Instrum. 77 073906Google Scholar

    [28]

    Hashisaka M, Nakamura S, Yamauchi Y, Kasai S, Kobayashi K, Ono T 2008 Phys. Status Solidi C 5 182Google Scholar

    [29]

    Arakawa T, Nishihara Y, Maeda M, Norimoto S, Kobayashi K 2013 Appl. Phys. Lett. 103 172104Google Scholar

    [30]

    Robinson A M, Talyanskii V I 2004 Rev. Sci. Instrum. 75 3169Google Scholar

    [31]

    Ronen Y, Cohen Y, Kang J H, Haim A, Rieder M T, Heiblum M, Mahalu D, Shtrikman H 2016 Proc. Natl Acad. Sci. USA 113 1743Google Scholar

    [32]

    陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚 2011 物理学报 60 050704Google Scholar

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Chen H, Sun P, Wang T L 2011 Acta Phys. Sin. 60 050704Google Scholar

    [33]

    Yang W H, Wei J 2018 Chin. Phys. B 27 060702Google Scholar

    [34]

    Dong Q, Liang Y X, Ferry D, Cavanna A, Gennser U, Couraud L, Jin Y 2014 Appl. Phys. Lett. 105 013504Google Scholar

    [35]

    Hashisaka M, Yamauchi Y, Nakamura S, Kasai S, Kobayashi K, Ono T 2008 J. Phys.: Conf. Ser. 109 012013Google Scholar

    [36]

    Dicarlo L, Williams J R, Zhang Y, McClure D T, Marcus C M 2008 Phys. Rev. Lett. 100 156801Google Scholar

  • 图 1  低温低噪声放大器的电路图(a)和实物图(b)

    Figure 1.  Circuit diagram (a) and picture (b) of a cryogenic low noise amplifier.

    图 2  (a)低温放大器增益-频率曲线; (b)低温放大器等效输入电压噪声

    Figure 2.  (a) Gain of the cryogenic amplifier with frequency; (b) equivalent input voltage noise of the cryogenic amplifier.

    图 3  牛津干式稀释制冷机Triton200散粒噪声测量系统(LC谐振中心频率为765 kHz)

    Figure 3.  Shot noise measurement system of Oxford dry dilution refrigerator Triton200(Center frequency of LC resonance circuit is 765 kHz).

    图 4  测量系统交流噪声模型

    Figure 4.  Circuit AC noise model used for measurement system.

    图 5  (a) 10 kΩ TaN电阻随温度变化; (b) TaN电阻与镍铬金属膜电阻构成的网络的热噪声测量的示意图

    Figure 5.  (a) Resistance of 10 kΩ TaN resistor as a function of temperature; (b) schematic diagram of thermal noise measurement of a network composed of TaN resistor and nickel chromium metal film.

    图 6  r = 10, 20 kΩ时PSD随着温度的变化

    Figure 6.  Variation of PSD with temperature when r = 10, 20 kΩ.

    图 7  4 K温度下, Al-AlOx-Al隧道结的dV/dI随着直流偏置I的变化(内嵌图为隧道结SEM图)

    Figure 7.  Differential resistance of an Al-AlOx-Al tunneling junction as a function of DC current I at 4 K(Inset: SEM image of a tunneling junction).

    图 8  (a) 4 K温度下, 输出的PSD随着频率f以及直流电流I的变化; (b)不同温度下, 中心频率765 kHz处输出的PSD随着直流电流I的变化

    Figure 8.  (a) Variation of PSD with frequency f and DC current I at 4 K; (b) variation of PSD at 765 kHz with DC current I at different temperatures.

    图 9  不同温度下, Al–AlOx–Al隧道结的散粒噪声Si随直流电流I的变化及拟合曲线

    Figure 9.  Shot noise Si of Al–AlOx–Al tunneling junction with DC current I at different temperatures and fitting curves.

    图 10  (a) 20 mK下, Al–AlOx–Al的微分电阻dV/dI随着直流偏置I的变化以及VI曲线; (b) 20 mK下, Al–AlOx–Al的Fano因子F随着直流偏置I的变化

    Figure 10.  (a) Differential resistance dV/dI of Al–AlOx–Al junction vs. DC current I at 20 mK and V-I curve at 20 mK; (b) fano factor F of Al–AlOx–Al junction vs. DC current I at 20 mK.

    表 1  不同课题组及公司的低温放大器功耗和本底电压噪声对比

    Table 1.  Comparison of power consumption and background noises of different cryogenic amplifiers made by different groups and companies.

    课题组或公司放大器
    电路分布
    功耗/mW本底电压噪声/nV·Hz–1/2
    DiCarlo课题组[27]分立1.80.4
    Robinson课题组[30]分立0.50.7
    Arakawa课题组[29]集成41
    Stahl-electronics公司集成130.25
    笔者课题组集成0.7540.25
    DownLoad: CSV

    表 2  不同架构的低温放大器参数对比

    Table 2.  Comparison of our home-made cryogenic amplifiers.

    放大器架构HEMT类型增益/倍功耗/mW带宽1/f噪声的拐角等效输入电压噪声/nV·Hz–1/2
    共源极 + 源极跟随ATF3314315.83.56810 Hz—20 MHz300 kHz0.45
    共源极定制*100.75410 Hz—1 MHz3 kHz0.25
    共源共栅 + 源极跟随定制*253500 Hz—20 MHz30 kHz0.17
    注: *表示由法国国家科学院纳米科学与技术中心金勇课题组提供的HEMT
    DownLoad: CSV

    表 3  不同温度下, 拟合得到的Fano因子

    Table 3.  Fano factors are obtained by fitting the test data at different temperature.

    T/K46810121416
    F0.948270.950850.951150.981940.971130.990880.96408
    DownLoad: CSV
  • [1]

    Landauer R 1998 Nature 392 658Google Scholar

    [2]

    Schottky W 1918 Ann. Phys. 57 541

    [3]

    Beenakker C, Schönenberger C 2003 Phys. Today 56 37

    [4]

    Blanter Y M, Büttiker M 2000 Phys. Rep. 336 1Google Scholar

    [5]

    Lesovik G B 1989 JETP Lett. 49 513

    [6]

    Buttiker M 1990 Phys. Rev. Lett. 65 2901Google Scholar

    [7]

    Beenakker C W J, Büttiker M 1992 Phys. Rev. B 46 1889Google Scholar

    [8]

    Reznikov M, Heiblum M, Shtrikman H, Mahalu D 1995 Phys. Rev. Lett. 75 3340Google Scholar

    [9]

    Kumar A, Saminadayar L, Glattli D C 1996 Phys. Rev. Lett. 76 2778Google Scholar

    [10]

    Picciotto R D, Reznikov M, Heiblum M, Umansky V, Bunin G, Mahalu D 1997 Nature 389 162Google Scholar

    [11]

    Saminadayar L, Glattli D C, Jin Y, Etienne B 1997 Phys. Rev. Lett. 79 2526Google Scholar

    [12]

    Reznikov M, de Picciotto R, Griffiths T G, Heiblum M, Umansky V 1999 Nature 399 238Google Scholar

    [13]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [14]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [15]

    Zhang H, Liu C X, Gazibegovic S, Xu D, Logan J A, Wang G, van Loo N, Bommer J D S, de Moor M W A, Car D, Op Het Veld R L M, van Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrom C J, Bakkers E, Sarma S D, Kouwenhoven L P 2018 Nature 556 74Google Scholar

    [16]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [17]

    Sbierski B, Pohl G, Bergholtz E J, Brouwer P W 2014 Phys. Rev. Lett. 113 026602Google Scholar

    [18]

    Trescher M, Sbierski B, Brouwer P W, Bergholtz E J 2015 Phys. Rev. B 91 115135Google Scholar

    [19]

    Matveeva P G, Aristov D N, Meidan D, Gutman D B 2017 Phys. Rev. B 96 165406Google Scholar

    [20]

    Yang Y L, Bai C X, Xu X G, Jiang Y 2018 Nanotechnology 29 074002Google Scholar

    [21]

    Golub A, Horovitz B 2011 Phys. Rev. B 83 153415Google Scholar

    [22]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002Google Scholar

    [23]

    Soller H, Komnik A 2014 Physica E 63 99Google Scholar

    [24]

    Bolech C J, Demler E 2008 Physica B 403 994Google Scholar

    [25]

    Akhmerov A R, Dahlhaus J P, Hassler F, Wimmer M, Beenakker C W 2011 Phys. Rev. Lett. 106 057001Google Scholar

    [26]

    Lü H F, Guo Z, Ke S S, Guo Y, Zhang H W 2015 J. Appl. Phys. 117 164312Google Scholar

    [27]

    DiCarlo L, Zhang Y, McClure D T, Marcus C M, Pfeiffer L N, West K W 2006 Rev. Sci. Instrum. 77 073906Google Scholar

    [28]

    Hashisaka M, Nakamura S, Yamauchi Y, Kasai S, Kobayashi K, Ono T 2008 Phys. Status Solidi C 5 182Google Scholar

    [29]

    Arakawa T, Nishihara Y, Maeda M, Norimoto S, Kobayashi K 2013 Appl. Phys. Lett. 103 172104Google Scholar

    [30]

    Robinson A M, Talyanskii V I 2004 Rev. Sci. Instrum. 75 3169Google Scholar

    [31]

    Ronen Y, Cohen Y, Kang J H, Haim A, Rieder M T, Heiblum M, Mahalu D, Shtrikman H 2016 Proc. Natl Acad. Sci. USA 113 1743Google Scholar

    [32]

    陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚 2011 物理学报 60 050704Google Scholar

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Chen H, Sun P, Wang T L 2011 Acta Phys. Sin. 60 050704Google Scholar

    [33]

    Yang W H, Wei J 2018 Chin. Phys. B 27 060702Google Scholar

    [34]

    Dong Q, Liang Y X, Ferry D, Cavanna A, Gennser U, Couraud L, Jin Y 2014 Appl. Phys. Lett. 105 013504Google Scholar

    [35]

    Hashisaka M, Yamauchi Y, Nakamura S, Kasai S, Kobayashi K, Ono T 2008 J. Phys.: Conf. Ser. 109 012013Google Scholar

    [36]

    Dicarlo L, Williams J R, Zhang Y, McClure D T, Marcus C M 2008 Phys. Rev. Lett. 100 156801Google Scholar

  • [1] Huang Xin-Yu, Zhang Jin-Xin, Wang Xin, Lü Ling, Guo Hong-Xia, Feng Juan, Yan Yun-Yi, Wang Hui, Qi Jun-Xiang. Numerical simulation of single-particle transients in low-noise amplifiers based on silicon-germanium heterojunction bipolar transistors and inverse-mode structures. Acta Physica Sinica, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [2] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [3] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [4] Fu Bai-Shan, Liao Yi, Zhou Jun. Dilution refrigerator and its heat transfer problems. Acta Physica Sinica, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [5] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [6] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [7] Yan Zhi-Meng, Wang Jing, Guo Jian-Hong. Low-bias oscillations of shot noise as signatures of Majorana zero modes. Acta Physica Sinica, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [8] Zhou Yang, Guo Jian-Hong. Shot noise characteristics of Majorana fermions in transport through double quantum dots. Acta Physica Sinica, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [9] Wu Shao-Bing, Chen Shi, Li Hai, Yang Xiao-Fei. Researching progress of the 1/f noise in TMR and GMR sensors. Acta Physica Sinica, 2012, 61(9): 097504. doi: 10.7498/aps.61.097504
    [10] Jia Xiao-Fei, Du Lei, Tang Dong-He, Wang Ting-Lan, Chen Wen-Hao. Research on shot noise suppression in quasi-ballistic transport nano-mOSFET. Acta Physica Sinica, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [11] Tang Dong-He, Du Lei, Wang Ting-Lan, Chen Hua, Chen Wen-Hao. Qualitative analysis of excess noise in nanoscale MOSFET. Acta Physica Sinica, 2011, 60(10): 107201. doi: 10.7498/aps.60.107201
    [12] Zhuang Yi-Qi, Bao Jun-Lin, Sun Peng, Wang Ting-Lan, Chen Wen-Hao, Du Lei, He Liang, Chen Hua. Shot noise measurement methods in electronic devices. Acta Physica Sinica, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [13] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] Liang Zhi-Peng, Dong Zheng-Chao. Shot noise in the semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [15] Chen Hua, Du Lei, Zhuang Yi-Qi, Niu Wen-Juan. Relation between charge shot noise and spin polarization governed by Rashba spin orbit interaction. Acta Physica Sinica, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [16] Chen Hua, Du Lei, Zhuang Yi-Qi. Monte Carlo simulation of shot noise in the coherent and mesoscopic system. Acta Physica Sinica, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [17] An Xing-Tao, Li Yu-Xian, Liu Jian-Jun. Noise in mesoscopic physics. Acta Physica Sinica, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [18] Kuang Deng-Feng, Liu Qing-Gang, Hu Xiao-Tang, Hu Liu-Chang, Guo Wei-Lian. Fabrication and properties of nano metric tunneling junction. Acta Physica Sinica, 2006, 55(1): 80-83. doi: 10.7498/aps.55.80
    [19] Zhang Zhi-Yong, Wang Tai-Hong. Luttinger parameter of carbon nanotubes investigated by shot noise experiment. Acta Physica Sinica, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [20] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
Metrics
  • Abstract views:  10545
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2019
  • Accepted Date:  16 February 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回