Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-bias oscillations of shot noise as signatures of Majorana zero modes

Yan Zhi-Meng Wang Jing Guo Jian-Hong

Citation:

Low-bias oscillations of shot noise as signatures of Majorana zero modes

Yan Zhi-Meng, Wang Jing, Guo Jian-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Majorana zero-energy modes are their own antiparticles, which are potential building blocks of topological quantum computing. Recently, there has been growing the interest in searching for Majorana zero modes in condensed matter physics. Semiconductor-superconductor hybrid systems have received particular attention because of easy realization and high-degree experimental control. The Majorana zero-energy modes are predicted to appear at two ends of a semiconductor nanowire, in the proximity of an s-wave superconductor and under a proper external magnetic field. Experimental signatures of Majorana zero modes in semiconductor-superconductor systems typically consist of zero-bias conductance peaks in tunneling spectra. So far it is universally received that an ideal semiconductor-superconductor hybrid structure should possess Majorana zero-energy modes. However, an unambiguous verification remains elusive because zero-bias conductance peaks can also have non-topological origins, such as Kondo effect, Andreev bound states or disorder effect. Therefore, it is important to investigate additional evidences to conclusively confirm the presence of Majorana zero modes in the hybrid solid state devices. It has been suggested that the Majorana-quantum dot hybrid system might be one of the solutions to the problem. Up to now, various Majorana-dot hybrid devices have been proposed to detect the existence of Majorana zero modes. Most of these studies mainly focused on the limits of transport at zero temperature, large bias voltage or zero frequency shot noise. Then a natural question is how the current correlations between the electrons transport through the topological nanowire, especially still in the zero-bias regime. In this paper, a specific spinless model consisting of a quantum dot tunnel-coupled to topological nanowire is considered. We present a systematic investigation of the electron transport by using a particle-number resolved master equation. We pay particular attention to the effects of Majorana's dynamics on the current fluctuations (shot noise) at nonzero temperature and finite bias voltage as well as at finite frequencies, especially in the low-bias regime. It is shown that the difference between the electrode currents combined with the low-bias oscillations of finite-frequency shot noise can identify Majorana zero modes from the usual resonant-tunneling levels. When there exist Majorana zero modes, on the one hand, the current difference depends on the asymmetry of electron tunneling rate. The asymmetric behaviors can expose the essential features of the Majorana zero modes since the symmetric current difference is zero. And the zero-bias conductance peak appears for the asymmetric coupling. Moreover, as the Majorana splitting energy increases, the current difference is suppressed while it is increased with the dot-wire coupling increasing. On the other hand, the dynamics of Majorana coherent oscillations between the dot and the wire is revealed in the finite-frequency shot noise. Due to the existence of Majorana zero modes the finite-frequency shot noise shows oscillations with a pronounced zero-frequency noise enhancement. Especially in the low-bias regime, the noise spectrum still exhibits an oscillation behavior which is absent from the large-bias voltage limit. Furthermore, with the Majorana splitting energy increasing, the oscillations of shot noise become more obvious, but the zero-frequency peak is lowered. When the dot is asymmetrically coupled to the electrode, the shot noise gradually changes into the super-Poissonian statistics from the sub-Poissonian statistics. This indicates the crossover from antibunched to bunched electron transport. As a result, the combination of the current difference and the low-bias oscillations of finite-frequency shot noise allows one to probe the presence of Majorana zero modes. It is therefore expected that the findings of this work can offer additional guides for experiments to identify signatures of Majorana zero modes in solid state sy
      Corresponding author: Guo Jian-Hong, gjhaso@163.com
    • Funds: Project supported by the Scientific Research Foundation of Beijing Education Commission, China (Grant No. KM201210028008).
    [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362

    [4]

    Nayak C, Wilczek F 1996 Nucl. Phys. B 479 529

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, DasSarma S 2008 Rev. Mod. Phys. 80 1083

    [6]

    Alicea J 2012 Rep. Prog. Phys. 75 076501

    [7]

    Sau J D, Lutchyn R M, Tewari S, DasSarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, DasSarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [11]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602

    [14]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P, Marcus C M 2016 Nature 531 206

    [15]

    Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P, Marcus C M 2016 Science 354 1557

    [16]

    Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803

    [17]

    Zhang H, Gl , Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, de Vries F K, van Veen J, de Moor M W A, Bommer J D S, van Woerkom D J, Car D, Plissard S R, Bakkers E P A M, Quintero-Prez M, Cassidy M C, Koelling S, Goswami S, Watanabe K, Taniguchi T, Kouwenhoven L P 2017 Nat. Commun. 8 16025

    [18]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [19]

    Haim A, Berg E, von Oppen F, Oreg Y 2015 Phys. Rev. Lett. 114 166406

    [20]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [21]

    Bagrets D, Altland A 2012 Phys. Rev. Lett. 109 227005

    [22]

    Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner M 1998 Nature 391 156

    [23]

    Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 86 100503

    [24]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [25]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [26]

    Chen Q, Chen K Q, Zhao H K 2014 J. Phys.: Condens. Matter 26 315011

    [27]

    Li Z Z, Lam C H, You J Q 2015 Sci. Rep. 5 11416

    [28]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [29]

    Gong W J, Zhang S F, Li Z C, Yi G, Zheng Y S 2014 Phys. Rev. B 89 245413

    [30]

    Jiang C, Lu G, Gong W J 2014 J. Appl. Phys. 116 103704

    [31]

    Gong W J, Zhao Y, Gao Z, Zhang S F 2015 Curr. Appl. Phys. 15 520

    [32]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [33]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [34]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

    [35]

    DasSarma S, Sau J D, Stanescu T D 2012 Phys. Rev. B 86 220506

    [36]

    Thielmann A, Hettler M H, Knig J, Schn G 2003 Phys. Rev. B 68 115105

    [37]

    Aghassi J, Thielmann A, Hettler M H, Schn G 2006 Phys. Rev. B 73 195323

  • [1]

    Wilczek F 2009 Nat. Phys. 5 614

    [2]

    Elliott S R, Franz M 2015 Rev. Mod. Phys. 87 137

    [3]

    Moore G, Read N 1991 Nucl. Phys. B 360 362

    [4]

    Nayak C, Wilczek F 1996 Nucl. Phys. B 479 529

    [5]

    Nayak C, Simon S H, Stern A, Freedman M, DasSarma S 2008 Rev. Mod. Phys. 80 1083

    [6]

    Alicea J 2012 Rep. Prog. Phys. 75 076501

    [7]

    Sau J D, Lutchyn R M, Tewari S, DasSarma S 2010 Phys. Rev. Lett. 104 040502

    [8]

    Lutchyn R M, Sau J D, DasSarma S 2010 Phys. Rev. Lett. 105 077001

    [9]

    Oreg Y, Refael G, Oppen F V 2010 Phys. Rev. Lett. 105 177002

    [10]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003

    [11]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [12]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414

    [13]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602

    [14]

    Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P, Marcus C M 2016 Nature 531 206

    [15]

    Deng M T, Vaitiekenas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygard J, Krogstrup P, Marcus C M 2016 Science 354 1557

    [16]

    Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K, Marcus C M 2017 Phys. Rev. Lett. 119 136803

    [17]

    Zhang H, Gl , Conesa-Boj S, Nowak M P, Wimmer M, Zuo K, Mourik V, de Vries F K, van Veen J, de Moor M W A, Bommer J D S, van Woerkom D J, Car D, Plissard S R, Bakkers E P A M, Quintero-Prez M, Cassidy M C, Koelling S, Goswami S, Watanabe K, Taniguchi T, Kouwenhoven L P 2017 Nat. Commun. 8 16025

    [18]

    Alicea J, Oreg Y, Refael G, von Oppen F, Fisher M P A 2011 Nat. Phys. 7 412

    [19]

    Haim A, Berg E, von Oppen F, Oreg Y 2015 Phys. Rev. Lett. 114 166406

    [20]

    Bolech C J, Demler E 2007 Phys. Rev. Lett. 98 237002

    [21]

    Bagrets D, Altland A 2012 Phys. Rev. Lett. 109 227005

    [22]

    Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U, Kastner M 1998 Nature 391 156

    [23]

    Kells G, Meidan D, Brouwer P W 2012 Phys. Rev. B 86 100503

    [24]

    Liu D E, Baranger H U 2011 Phys. Rev. B 84 201308

    [25]

    Cao Y, Wang P, Xiong G, Gong M, Li X Q 2012 Phys. Rev. B 86 115311

    [26]

    Chen Q, Chen K Q, Zhao H K 2014 J. Phys.: Condens. Matter 26 315011

    [27]

    Li Z Z, Lam C H, You J Q 2015 Sci. Rep. 5 11416

    [28]

    Shang E M, Pan Y M, Shao L B, Wang B G 2014 Chin. Phys. B 23 057201

    [29]

    Gong W J, Zhang S F, Li Z C, Yi G, Zheng Y S 2014 Phys. Rev. B 89 245413

    [30]

    Jiang C, Lu G, Gong W J 2014 J. Appl. Phys. 116 103704

    [31]

    Gong W J, Zhao Y, Gao Z, Zhang S F 2015 Curr. Appl. Phys. 15 520

    [32]

    Wang S K, Jiao H J, Li F, Li X Q 2007 Phys. Rev. B 76 125416

    [33]

    Li X Q, Cui P, Yan Y J 2005 Phys. Rev. Lett. 94 066803

    [34]

    Luo J Y, Li X Q, Yan Y J 2007 Phys. Rev. B 76 085325

    [35]

    DasSarma S, Sau J D, Stanescu T D 2012 Phys. Rev. B 86 220506

    [36]

    Thielmann A, Hettler M H, Knig J, Schn G 2003 Phys. Rev. B 68 115105

    [37]

    Aghassi J, Thielmann A, Hettler M H, Schn G 2006 Phys. Rev. B 73 195323

  • [1] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [3] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [4] Zhou Liang-Liang, Wu Hong-Bo, Li Xue-Ming, Tang Li-Bin, Guo Wei, Liang Jing. ZrS2 quantum dots: Preparation, structure, and optical properties. Acta Physica Sinica, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [5] Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures. Acta Physica Sinica, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [6] Zhou Yang, Guo Jian-Hong. Shot noise characteristics of Majorana fermions in transport through double quantum dots. Acta Physica Sinica, 2015, 64(16): 167302. doi: 10.7498/aps.64.167302
    [7] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [8] Jia Xiao-Fei, Du Lei, Tang Dong-He, Wang Ting-Lan, Chen Wen-Hao. Research on shot noise suppression in quasi-ballistic transport nano-mOSFET. Acta Physica Sinica, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [9] Ju Xin, Guo Jian-Hong. Influence of interdot-coupling on differentialconductance for a triple quantum dot. Acta Physica Sinica, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [10] Tang Dong-He, Du Lei, Wang Ting-Lan, Chen Hua, Chen Wen-Hao. Qualitative analysis of excess noise in nanoscale MOSFET. Acta Physica Sinica, 2011, 60(10): 107201. doi: 10.7498/aps.60.107201
    [11] Zhuang Yi-Qi, Bao Jun-Lin, Sun Peng, Wang Ting-Lan, Chen Wen-Hao, Du Lei, He Liang, Chen Hua. Shot noise measurement methods in electronic devices. Acta Physica Sinica, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [12] Liang Zhi-Peng, Dong Zheng-Chao. Shot noise in the semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [13] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] Chen Hua, Du Lei, Zhuang Yi-Qi, Niu Wen-Juan. Relation between charge shot noise and spin polarization governed by Rashba spin orbit interaction. Acta Physica Sinica, 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [15] Chen Hua, Du Lei, Zhuang Yi-Qi. Monte Carlo simulation of shot noise in the coherent and mesoscopic system. Acta Physica Sinica, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [16] An Xing-Tao, Li Yu-Xian, Liu Jian-Jun. Noise in mesoscopic physics. Acta Physica Sinica, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [17] Deng Yu-Xiang, Yan Xiao-Hong, Tang Na-Si. Electron transport through a quantum dot ring. Acta Physica Sinica, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [18] Hou Chun-Feng, Guo Ru-Hai. Energy structures of the elliptic cylindrical quantum dots. Acta Physica Sinica, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [19] Zhang Zhi-Yong, Wang Tai-Hong. Luttinger parameter of carbon nanotubes investigated by shot noise experiment. Acta Physica Sinica, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [20] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
Metrics
  • Abstract views:  7276
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2017
  • Accepted Date:  03 July 2018
  • Published Online:  20 September 2019

/

返回文章
返回