-
In this work, the AgNbO3 piezoelectric nanomaterials are hydrothermally synthesized, and they have an average particle size of~1 m, which is obtained from scanning electron microscopy pattern. The AgNbO3 nanomaterial possesses an orthorhombic crystal structure with an mm2 point group symmetry, indicated by the X-ray powder diffraction analysis result. The piezo-electrochemical coupling of AgNbO3 is characterized, and its physical mechanism is discussed. Under an external mechanical vibration, the surfaces of the piezoelectric AgNbO3 nanomaterials will generate a large number of positive and negative electric charges. Due to the existence of spontaneous polarization, these positive and negative electrical carriers are respectively distributed on the top surface and bottom surface of AgNbO3 and can further induce the generation of some strong oxidation middle active species such as hydroxyl radicals in solution on the basis of some special chemical redox reactions, realizing the piezo-electrochemical coupling. Therefore, we can consider the piezo-electrochemical coupling as the product of the piezoelectric effect and the electrochemical redox effect. Utilizing the strong piezo-electrochemical coupling, a practical application in mechano-catalysis is further developed to decompose dye solution under a driven vibration. After experiencing~60 min vibration with AgNbO3 nanomaterial as mechano-catalyst,~70% rhodamine B (~5 mg/L) is decomposed. Prior to the vibration, the rhodamine B solution with the addition of AgNbO3 catalyst is slowly stirred for 30 min to ensure the establishment of the physical adsorptiondesorption equilibrium between catalyst and dye. It is difficult to directly exert a mechanical stress on the micro/nanoparticles. Here, an ultrasonic source with a vibration frequency of~40 kHz is employed to exert a stress to compress and stretch the AgNbO3 particles through utilizing micro-bubble collapse forces during ultrasonic cavitations, which needs the AgNbO3 particle size to be roughly identical with the diameter (~m) of micro-bubble. Our mechanocatalytic dye decomposition experiment is conducted at room-temperature and in a dark environment to avoid the influence of photocatalysis. The slight increase of temperature of the dye solution in the ultrasonic vibration process has no obvious influence on the dye decomposition efficiency, which has been confirmed from our experiment. Through a technology of fluorescence spectrum trapping, the intermediate active product in the piezo-electrochemical coupling process-the strongly oxidized hydroxyl radicals, is successfully observed. With the increase of vibration time, the number of hydroxyl radicals obviously increases, which proves that the piezo-electrochemical coupling plays a key role in our mechano-catalytic process. After using AgNbO3 catalyst in cyclic decomposition of rhodamine B 5 times, no obvious reduction in the piezo-electrochemical coupling performance occurs. The AgNbO3 nanomaterial possesses an efficient piezo-electrochemical coupling for mechano-catalysis, and it has the advantages of high decomposition efficiency and reusability, and potential applications in vibration decomposing dye.
-
Keywords:
- piezo-electrochemical coupling /
- piezoelectric effect /
- mechano-catalysis /
- AgNbO3 nano-materials
[1] Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031
[2] Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]
[3] Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536
[4] Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]
[5] Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]
[6] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]
[7] Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642
[8] Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185
[9] Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780
[10] Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485
[11] Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367
[12] Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776
[13] Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904
[14] Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122
[15] Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907
[16] Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785
[17] You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531
[18] Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758
[19] Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]
[20] Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]
[21] Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845
[22] Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441
[23] Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235
[24] Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907
[25] Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102
[26] Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265
[27] You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528
[28] Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102
[29] You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55
[30] Eddingsaas N C, Suslick K S 2006 Nature 444 163
[31] Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143
[32] Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343
[33] Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124
[34] Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]
[35] Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119
[36] Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904
[37] Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]
[38] Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81
[39] Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264
[40] Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]
[41] Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618
[42] Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633
-
[1] Mueller M, Buser H 1995 Environ. Sci. Technol. 29 2031
[2] Wu H P, Ling H, Zhang Z, Li Y B, Liang L H, Chai G Z 2017 Acta Phys. Sin. 66 167702 (in Chinese)[吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟 2017 物理学报 66 167702]
[3] Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electro. Mater. 47 536
[4] Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104 (in Chinese)[赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104]
[5] Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212 (in Chinese)[李冬冬, 王丽莉 2012 物理学报 61 034212]
[6] Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102 (in Chinese)[李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102]
[7] Dong X P, Cheng F X 2015 J. Mater. Chem. A 3 23642
[8] Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo J N, Domen K, Hosono H, Kawazoe H, Tanaka A 1998 Chem. Commun. 20 2185
[9] Hara M, Komoda M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N, Domen K 2000 J. Phys. Chem. B 104 780
[10] Ikeda S, Takata T, Komoda M, Hara M, Kondo J N, Domen K, Tanaka A, Hosono H, Kawazoe H 1999 Chem. Phys. 1 4485
[11] Zhang J, Wu Z, Jia Y M, Kan J W, Cheng G M 2013 Sensors 13 367
[12] Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776
[13] Wu Z, Ma K, Cao Y, Jia Y M, Xie A X, Chen J R, Zhang Y H, Li H M, Zheng R K, Luo H S 2013 Appl. Phys. Lett. 103 112904
[14] Xia Y T, Jia Y M, Qian W Q, Xu X L, Wu Z, Han Z C, Hong Y T, You H L, Ismail M, Bai G, Wang L W 2017 Metals 7 122
[15] Lin H, Wu Z, Jia Y M, Lin W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907
[16] Volkov A A, Gorshunov B P, Komandin G, Fortin W, Kugel G E, Kania A, Grigas J 1995 J. Phys.:Condens Matter 7 785
[17] You H L, Wu Z, Wang L, Jia Y M, Li S, Zou J 2018 Chemosphere 199 531
[18] Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y 2014 Phys. Chem. Chem. Phys. 16 2758
[19] Huang D, J Z P, Li C S, Yao C M, Guo J 2014 Acta Phys. Sin. 63 247101 (in Chinese)[黄丹, 鞠志萍, 李长生, 姚春梅, 郭进 2014 物理学报 63 247101]
[20] Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801 (in Chinese)[佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801]
[21] Li G Q, Kako T, Wang D F, Zou Z G, Ye J H 2007 J. Solid State Chem. 180 2845
[22] Kato H, Kobayashi H, Kudo A 2002 J. Phys. Chem. B 106 12441
[23] Li G Q, Yang N, Wang W L, Zhang M F 2010 Electrochimica Acta 55 7235
[24] Fu D, Endo M, Taniguchi H 2007 Appl. Phys. Lett. 90 252907
[25] Moriwake H, Konishi A, Ogawa T, Fisher C A J, Kuwabara A, Fu D 2016 J. Appl. Phys. 119 064102
[26] Kania A, Roleder K, Lukaszewski M 1983 Ferroelectrics 52 265
[27] You H L, Wu Z, Jia Y M, Xu X L, Xia Y T, Han Z C, Wang Y 2017 Chemosphere 183 528
[28] Wang X D, Song J H, Liu J, Wang Z L 2007 Science 316 102
[29] You H L, Jia Y M, Wu Z, Xu X L, Qian W Q, Xia Y T, Ismail M 2017 Electrochem. Commun. 79 55
[30] Eddingsaas N C, Suslick K S 2006 Nature 444 163
[31] Xu X L, Jia Y M, Xiao L B, Wu Z 2018 Chemosphere 193 1143
[32] Wu J, Mao W J, Wu Z, Xu X L, You H L, Xue A X, Jia Y M 2016 Nanoscale 8 7343
[33] Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124
[34] Nan C W 2004 Prog. Nat. Sci. 04 390 (in Chinese)[南策文 2004 自然科学进展 04 390]
[35] Wang Z Y, Hu J, Yua M F 2006 Appl. Phys. Lett. 89 263119
[36] Yu D, Zhao M L, Wang C L, Wang L H, Su W B 2016 Appl. Phys. Lett. 109 032904
[37] Gao Y H, Geng X P 2004 J. Chengde Petroleum College 03 39 (in Chinese)[高永慧, 耿小丕 2004 承德石油高等专科学校学报 03 39]
[38] Lee K K, Han G Y, Yoon K J, Lee B K 2004 Catal. Today 93 81
[39] Konieczny A, Mondal K, Wiltowski T, Dydo P 2008 J. Hydrogen Energy 33 264
[40] Zhao J B, Du H L, Qu S B, Zhang H M, Xu Z 2011 Mater. Sci. 1 17 (in Chinese)[赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓 2011 材料科学 1 17]
[41] Wu W M, Liang S J, Chen Y, Shen L J, Yuan R S, Wu L 2013 Mater. Res. Bull. 48 1618
[42] Shu H M, Xie J M, Xua H, Li H M, Gu Z, Sun G S, Xu Y G 2010 J. Alloys Compd. 496 633
Catalog
Metrics
- Abstract views: 8562
- PDF Downloads: 415
- Cited By: 0