Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress in enhancement strategies and mechanisms of piezo-electro-chemical coupling

Jia Yan-Min Wang Xiao-Xing Zhang Qi-Chang Wu Zheng

Citation:

Research progress in enhancement strategies and mechanisms of piezo-electro-chemical coupling

Jia Yan-Min, Wang Xiao-Xing, Zhang Qi-Chang, Wu Zheng
PDF
HTML
Get Citation
  • Piezoelectric materials can harvest tiny mechanical energy existing in the environment, and have strong ability to convert mechanical signals into electrical signals. Piezo-electro-chemical coupling can be realized via combining piezoelectric effect of piezoelectric materials with electrochemical redox effect. In recent years, piezo-electro-chemical coupling has attracted a lot of attention from researchers in harvesting vibration energy to treat dye wastewater. The piezoelectric catalyst material dispersed in solution is deformed by ultrasonic vibrations. Owing to the piezoelectric effect and spontaneous polarization effects, positive and negative charges are generated at both ends of the catalyst, which can further react with dissolved oxygen and hydroxide ions in the solution to generate superoxide and hydroxyl radicals (·${}{\rm{O}}_2^- $ and ·OH) for decomposing organic dyes. However, ordinary piezoelectric catalytic materials are often difficult to meet people's pursuit of efficient treatment of organic dyes. Researchers have conducted a lot of researches on piezo-electro-chemical coupling, mainly focusing on the following two aspects: 1) the modification of piezoelectric catalysts to achieve extended carrier lifetime, accelerate carrier separation and high piezoelectric coefficients, and 2) the combination of piezo-electro-chemical coupling with photocatalysis to suppress photogenerated carrier compounding to obtain high synergistic catalytic performance. In this work, the following five strategies to enhance the piezo-electro-chemical coupling via modifying piezoelectric catalyst materials are introduced. The heterojunction structure is constructed to promote the separation of electron-hole pairs. The precious metal is coated on the surface of the catalyst to accelerate the transport and transfer of electrons. The catalyst composition is regulated and controlled to obtain an increased piezoelectric coefficient at the phase boundary. Carbon or graphene are mixed in the catalyst to accelerate the electron transfer on the surface of piezoelectric material. The number of active sites increases through introducing defects into the catalyst to increase the concentration of carriers. The physical mechanisms of five different strategies are described from the perspectives of electron transport and transfer, phase transition, and oxygen vacancies. In addition, the prospects for piezo-electro-chemical coupling in energy and biomedical applications such as hydrogen production, carbon dioxide reduction, tumor therapy and tooth whitening are presented.
      Corresponding author: Jia Yan-Min, jiayanmin@xupt.edu.cn ; Wu Zheng, wuzheng@xpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 22179108).
    [1]

    Dai X Q, Chen L, Li Z Y, Li X, Wang J F, Hu X, Zhao L H, Jia Y M, Sun S X, Wu Y, He Y M 2021 J. Colloid Interface Sci. 603 220Google Scholar

    [2]

    Zhang W H, Wang X J, Zhang Y C, Bochove B, Mäkilä E, Seppälä J, Xu W Y, Willför S, Xu C L 2020 Sep. Purif. Technol. 242 116523Google Scholar

    [3]

    Oliveira L V, Bennici S, Josien L, Limousy L, Bizeto M A, Camilo F F 2020 Carbohydr. Polym. 230 115621Google Scholar

    [4]

    Wang S S, Wu Z, Chen J, Ma J P, Ying J S, Cui S C, Yu S G, Hu Y M, Zhao J H, Jia Y M 2019 Ceram. Int. 45 11703Google Scholar

    [5]

    Muraro P C L, Mortari S R, Vizzotto B S, Chuy G, Dos Santos C, Brum L F W, da Silva W L 2020 Sci. Rep. 10 1Google Scholar

    [6]

    Roy J S, Dugas G, Morency S, Messaddeq Y 2020 Physica E:Low Dimens. Syst. Nanostruct. 120 114114Google Scholar

    [7]

    Van Tran C, La D D, Hoai P N T, Ninh H D, Hong P N T, Vu T H T, Nadda A K, Nguyen X C, Nguyen D D, Ngo H H 2021 J. Hazard. Mater. 420 126636Google Scholar

    [8]

    李冬冬, 王丽莉 2012 物理学报 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [9]

    Wu W, Yin X, Dai B Y, Kou J H, Ni Y, Lu C H 2020 Appl. Surf. Sci. 517 146119Google Scholar

    [10]

    Lei H, Zhang H H, Zou Y, Dong X P, Jia Y M, Wang F F 2019 J. Alloys Compd. 809 151840Google Scholar

    [11]

    佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801Google Scholar

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801Google Scholar

    [12]

    Moghaddas S, Elahi B, Javanbakht V, 2020 J. Alloys Compd. 821 153519Google Scholar

    [13]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104Google Scholar

    [14]

    Cha B J, Woo T G, Han S W, Saqlain S, Seo H O, Cho H K, Jee Y K, Kim Y D 2018 Catalysts 8 500Google Scholar

    [15]

    Ni M, Leung M, Leung D, Sumathy K 2007 Renew. Sust. Energ. Rev. 11 401Google Scholar

    [16]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electron. Mater. 47 536Google Scholar

    [17]

    Ma J P, Chen L, Wu Z, Chen J, Jia Y M, Hu Y M 2019 Ceram. Int. 45 11934Google Scholar

    [18]

    Yu D F, Liu Z H, Zhang J M, Li S, Zhao Z C, Zhu L F, Liu W S, Lin Y H, Liu H, Zhang Z T 2019 Nano Energy 58 695Google Scholar

    [19]

    Ma J P, Wu Z, Luo W S, Zheng Y Q, Jia Y M, Wang L, Huang H T 2018 Ceram. Int. 44 21835Google Scholar

    [20]

    李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102Google Scholar

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102Google Scholar

    [21]

    You H L, Ma X X, Wu Z, Fei L F, Chen X Q, Yang J, Liu Y S, Jia Y M, Li H M, Wang F F, Huang H T 2018 Nano Energy 52 351Google Scholar

    [22]

    Wu Y L, Ma Y L, Zheng H Y, Ramakrishna S 2021 Materials & Design 211 110164Google Scholar

    [23]

    Hooper T E, Roscow J I, Mathieson A, Khanbareh H, Goetzee-Barral A J, Bell A J 2021 J. Eur. Ceram. Soc. 41 6115Google Scholar

    [24]

    Hong K S, Xu H F, Konishi H, Li X C 2010 J. Phys. Chem. Lett. 1 997Google Scholar

    [25]

    Feng Z Y, Tan O K, Zhu W G, Jia Y M, Luo H S 2008 Appl. Phys. Lett. 92 142910Google Scholar

    [26]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [27]

    Hong K S, Xu H F, Konishi H, Li X C 2012 J. Phys. Chem. C 116 13045Google Scholar

    [28]

    孙奇薇, 薛国梁, 周学凡, 罗行, 周科朝, 张斗 2021 中国有色金属学报 31 17Google Scholar

    Sun Q W, Xue G L, Zhou X F, Luo H, Zhou K C, Zhang D 2021 T. Nonferr. Metal. Soc. 31 17Google Scholar

    [29]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying S J, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [30]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907

    [31]

    Tu S C, Guo Y X, Zhang Y H, Hu C, Zhang T R, Ma T Y, Huang H W 2020 Adv. Funct. Mater. 30 2005158Google Scholar

    [32]

    Wang M Y, Wang B, Huang F, Lin Z Q 2019 Angew. Chem. , Int. Ed. 58 7526Google Scholar

    [33]

    Pan L, Sun S C, Chen Y, Wang P H, Wang J Y, Zhang X W, Zou J J, Wang Z L 2020 Adv. Energy Mater. 10 2000214Google Scholar

    [34]

    Wang X D, Rohrer G S, Li H X, 2018 MRS Bull. 43 946Google Scholar

    [35]

    Liang Z, Yan C F, Rtimi S, Bandara J, 2019 Appl. Catal. B-environ. 241 256Google Scholar

    [36]

    Liu W, Wang M L, Xu C X, Chen S F 2012 Chem. Eng. J. 209 386Google Scholar

    [37]

    Yan Y X, Yang H, Yi Z, Xian T, Li R S, Wang X X 2019 Desalin. Water Treat. 170 349Google Scholar

    [38]

    Wang L K, Wang J F, Ye C Y, Wang K Q, Zhao C R, Wu Y, He Y M 2021 Ultrason. Sonochem. 80 105813Google Scholar

    [39]

    Zheng Y Q, Jia Y M, Li H M, Wu Z, Dong X P 2020 J Mater. Sci. 55 14787Google Scholar

    [40]

    Li L, She X J, Yi J J, Pan L, Xia K X, Wei W, Zhu X W, Chen Z G, Xu H, Li H M 2019 Appl. Surf. Sci. 469 933Google Scholar

    [41]

    Xing P X, Zhang W Q, Chen L, Dai X Q, Zhang J L, Zhao L H, He Y M 2020 Sustain. Energy Fuels 4 1112Google Scholar

    [42]

    Jakob M, Levanon H, Kamat P V 2003 Nano Lett. 3 353Google Scholar

    [43]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar

    [44]

    Lin E Z, Wu J, Qin N, Yuan B W, Bao D H 2018 Catal. Sci. Technol. 8 4788Google Scholar

    [45]

    Li Z Y, Zhang Q L, Wang L K, Yang J Y, Wu Y, He Y M 2021 Ultrason. Sonochem. 78 105729Google Scholar

    [46]

    Lin E Z, Kang Z H, Wu J, Huang R, Qin N, Bao D H 2021 Appl. Catal. B 285 119823Google Scholar

    [47]

    Zhao T L, Bokov A A, Wu J, Wang H, Wang C M, Yu Y, Wang C L, Zeng K Y, Ye Z G, Dong, S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar

    [48]

    Zhang A, Liu Z Y, Xie B, Lu J S, Guo K, Ke S M, Shu L L, Fan H Q 2020 Appl. Catal. B 279 119353Google Scholar

    [49]

    Yuan B W, Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2019 Appl. Mater. Today 17 183Google Scholar

    [50]

    Wu J G, Wu T 2020 ACS Appl. Mater. 12 52231Google Scholar

    [51]

    Pham Thi T P, Yan Z, Nick G, Hamideh K, Nguyen Phuc H D, Xuefan Z, Dou Z, Kechao Z, Steve D, Chris B 2020 iScience 23 101095Google Scholar

    [52]

    Kapat K, Shubhra Q T, Zhou M, Leeuwenburgh S 2020 Adv. Funct. Mater. 30 1909045Google Scholar

    [53]

    Dawson J A, Sinclair D C, Harding J H, Freeman C L 2014 Chem. Mater. 26 6104

    [54]

    Reaney I, Colla E, Setter N 1994 Jpn. J. Appl. Phys. 33 3984Google Scholar

    [55]

    Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2021 Mater. Today Energy 21 100732Google Scholar

    [56]

    Chen L, Jia Y M, Zhao J H, Ma J P, Wu Z, Yuan G L, Cui X Z 2021 J. Colloid Interface Sci. 586 758Google Scholar

    [57]

    Li X, Lin H M, Chen X, Niu H, Zhang T, Liu J Y, Qu F Y 2015 New J. Chem. 39 7863Google Scholar

    [58]

    Yao W, Shen C, Lu Y 2013 Compos. Sci. Technol. 87 8Google Scholar

    [59]

    Hou T, Cao F, Li M L, Wang J L, Lv L L 2020 J. Environ. Sci. Eng. 8 84Google Scholar

    [60]

    Kumar M, Singh G, Vaish R 2021 Mater. Adv 2 4093Google Scholar

    [61]

    Bai S L, Sun L X, Sun J H, Han J Y, Zhang K W, Li Q Q, Luo R X, Li D Q, Chen A 2021 J. Colloid Interface Sci. 587 183Google Scholar

    [62]

    Zhao Z C, Wei L Y, Li S, Zhu L F, Su Y P, Liu Y, Bu Y B, Lin Y H, Liu W S, Zhang Z T 2020 J. Mater. Chem. A 8 16238Google Scholar

    [63]

    Prakash J, Prasad U, Alexander R, Bahadur J, Dasgupta K, Kannan A N M 2019 Langmuir 35 14492Google Scholar

    [64]

    Miao Y, Tian W R, Han J, Li N J, Chen D Y, Xu Q F, Lu J M 2022 Nano Energy 100 107473Google Scholar

    [65]

    Zhou X F, Shen B, Zhai J W, Hedin N 2021 Adv. Funct. Mater. 31 2009594Google Scholar

    [66]

    Guan J F, Jia Y M, Chang T, Ruan L J, Xu T S, Zhang Z, Yuan G L, Wu Z, Zhu G Q 2022 Sep. Purif. Technol. 286 120450Google Scholar

    [67]

    Ji M, Kim J H, Ryu C H, Lee Y I 2022 Nano Energy 95 106993Google Scholar

    [68]

    Fu C, Wu T, Sun G W, Yin G F, Wang C, Ran G X, Song Q J 2023 Appl. Catal. B 323 122196Google Scholar

    [69]

    Khanbabaee B, Mehner E, Richter C, Hanzig J, Zschornak M, Pietsch U, St¨ocker H, Leisegang T, Meyer D C, Gorfman S 2016 Appl. Phys. Lett. 109 222901Google Scholar

    [70]

    Kang Z H, Lin E Z, Qin N, Wu J, Yuan B W, Bao D H 2021 Environ. Sci. :Nano 8 1376Google Scholar

    [71]

    Zhang D F, Su C H, Li H, Pu X P, Geng Y L 2020 J. Phys. Chem. Solids 139 109326Google Scholar

    [72]

    Zhao Q, Xiao H Y, Geng H F, Zheng Z P, Wang J S, Wang F F, Guo Y P 2021 Nano Energy 85 106028Google Scholar

    [73]

    Sun X X, Li R C, Yang Z W, Zhang N, Wu C, Li J H, Chen Y L, Chen Q, Zhang J, Yan H J, Lv X, Wu J G 2022 Appl. Catal. B 313 121471Google Scholar

    [74]

    Li J H, Wei X W, Sun X X, Li R C, Wu C, Liao J Y, Zhang T, Wu J G 2022 ACS Appl. Mater. Inter. 14 46765Google Scholar

    [75]

    Liu Z, Wen X R, Wang Y, Jia Y M, Wang F F, Yuan G L, Wang Y J 2022 Adv. Mater. Technol. 7 2101484Google Scholar

    [76]

    Ruan L J, Jia Y M, Guan J F, Xue B, Huang S H, Wang Z H, Fu Y H, Wu Z 2022 J. Clean. Prod. 345 131060Google Scholar

    [77]

    Wang S Y, Gao Y Y, Miao S, Liu T F, Mu L C, Li R G, Li R G, Fan F T, Li C 2017 J. Am. Chem. Soc. 139 11771Google Scholar

    [78]

    Chen S, Zhu P, Mao L J, Wu W C, Lin H, Xu D L, Lu X Y, Shi J L 2023 Adv. Mater. 2208256

    [79]

    Wang Y, Wen X R, Jia Y M, Huang M, Wang F F, Zhang X H, Bai Y Y, Yuan G L, Wang Y J 2020 Nat. Commun. 11 1328Google Scholar

  • 图 1  增强压-电-化学耦合5种策略, 异质结、贵金属负载、相界、缺陷、混合碳或石墨烯

    Figure 1.  Five strategies to enhance piezo-electro-chemical coupling, including heterojunction, coating precious metal, phase boundary, defects, mixing carbon or graphene.

    图 2  BTO/CN异质结压-电-化学耦合的机理图[39]

    Figure 2.  Mechanism diagram for the piezo-electro-chemical coupling of BTO/CN heterostructures [39].

    图 3  异质结材料不同含量助剂对染料的降解率的影响 (a) CoOx/BiFeO3异质结[38]; (b) BTO/CN异质结[39]

    Figure 3.  Effect of different content of cocatalyst in heterojunction materials on dye decomposition ratio: (a) CoOx/BiFeO3 heterostructure [38]; (b) BTO/CN heterostructure [39].

    图 4  Ag负载的BTO压-电-化学耦合的机理图[44]

    Figure 4.  Mechanism diagram for the piezo-electro-chemical coupling of Ag-coated BTO [44].

    图 5  不同Ag含量的BTO-Ag降解RhB染料的反应速率常数k值对比[44]

    Figure 5.  Comparison of reaction rate constant k of RhB dye decomposition by BTO-Ag with different Ag content [44].

    图 6  通过调控组分, 构建两相共存区[48]

    Figure 6.  Schematic diagram of constructing two-phase coexistence zone through regulating components [48].

    图 7  不同Sr含量的Ba1–xSrxTiO3 降解MO染料 [55]

    Figure 7.  Decomposition of MO dye by Ba1–xSrxTiO3 with different Sr content[55].

    图 8  不同C含量对BaTiO3降解RhB染料的影响[56]

    Figure 8.  Effects of RhB dye decomposition by BaTiO3 with different C content [56].

    图 9  BaTiO3/C的压-电-化学耦合示意图[56]

    Figure 9.  Mechanism diagram for the piezo-electro-chemical coupling of BaTiO3/C [56].

    图 10  Graphene/BiVO4的压-电-化学耦合示意图[60]

    Figure 10.  Mechanism diagram for the piezo-electro-chemical coupling of graphene/BiVO4[60].

    图 11  CNC 在热处理前后对RhB染料的降解率[66]

    Figure 11.  Decomposition ratio of RhB dye by CNC before and after heat treatment[66]

    表 1  不同策略对有机染料降解结果汇总

    Table 1.  Summary of decomposition results of organic dyes via different strategies.

    策略复合材料助剂增强前的降解率D
    或反应速率常数k
    增强后的降解率D
    或反应速率常数k
    构建异质结CoOx/BiFeO3CoO(光沉积时间为3 h)D = 50.76%D = 81.2% [38]
    BaTiO3/g-C3N4g-C3N4(质量分数为15%)D = 57%D = 82% [39]
    负载贵金属BaTiO3-AgAg(质量分数为2.09%)D = 15%D = 84% [44]
    Ag/PbBiO2IAg(质量分数为0.2%)k = 0.0024 min–1 k = 0.0165 min–1[45]
    构筑相界(1–x)Na0.5K0.5NbO3-xLiNbO3Li (x = 0.006)D = 53%D = 91% [48]
    (1–x)(Pb0.9625Sm0.025)
    (Mg1/3Nb2/3)O3-xPbTiO3
    PbTiO3(x = 0.29)k = 0.0453 min–1[49]
    Ba1–xSrxTiO3Sr(x = 0.20)k = 0.005 min–1 k = 0.025 min–1[51]
    0.96(K0.48Na0.52)Nb0.955Sb0.045O3-0.04(Bi0.5Na0.5)ZrO30.04(Bi0.5Na0.5)ZrO3k = 0.043 min–1 k = 0.091 min–1[73]
    0.82 Ba(Ti0.89Sn0.11)O3-0.18(Ba0.7Ca0.3)TiO30.18(Ba0.7Ca0.3)TiO3k = 0.0706 min–1k = 0.0094 min–1[74]
    混合碳BaTiO3/CC(质量分数为2%)D = 48.4%D = 75.5% [56]
    混合石墨烯BaTiO3@GrapheneGraphene(质量比为2∶1)k = 0.002 min–1 k = 0.028 min–1[59]
    Graphene/BiVO4Graphene(质量分数为2%)D = 19%D = 81% [60]
    调控缺陷BaTiO3–xk = 0.0084 min–1 k = 0.0101 min–1 [67]
    C3N5–x-OD = 73.5%D = 99% [68]
    CNCD = 34.58%D = 96.65% [66]
    DownLoad: CSV
  • [1]

    Dai X Q, Chen L, Li Z Y, Li X, Wang J F, Hu X, Zhao L H, Jia Y M, Sun S X, Wu Y, He Y M 2021 J. Colloid Interface Sci. 603 220Google Scholar

    [2]

    Zhang W H, Wang X J, Zhang Y C, Bochove B, Mäkilä E, Seppälä J, Xu W Y, Willför S, Xu C L 2020 Sep. Purif. Technol. 242 116523Google Scholar

    [3]

    Oliveira L V, Bennici S, Josien L, Limousy L, Bizeto M A, Camilo F F 2020 Carbohydr. Polym. 230 115621Google Scholar

    [4]

    Wang S S, Wu Z, Chen J, Ma J P, Ying J S, Cui S C, Yu S G, Hu Y M, Zhao J H, Jia Y M 2019 Ceram. Int. 45 11703Google Scholar

    [5]

    Muraro P C L, Mortari S R, Vizzotto B S, Chuy G, Dos Santos C, Brum L F W, da Silva W L 2020 Sci. Rep. 10 1Google Scholar

    [6]

    Roy J S, Dugas G, Morency S, Messaddeq Y 2020 Physica E:Low Dimens. Syst. Nanostruct. 120 114114Google Scholar

    [7]

    Van Tran C, La D D, Hoai P N T, Ninh H D, Hong P N T, Vu T H T, Nadda A K, Nguyen X C, Nguyen D D, Ngo H H 2021 J. Hazard. Mater. 420 126636Google Scholar

    [8]

    李冬冬, 王丽莉 2012 物理学报 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [9]

    Wu W, Yin X, Dai B Y, Kou J H, Ni Y, Lu C H 2020 Appl. Surf. Sci. 517 146119Google Scholar

    [10]

    Lei H, Zhang H H, Zou Y, Dong X P, Jia Y M, Wang F F 2019 J. Alloys Compd. 809 151840Google Scholar

    [11]

    佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801Google Scholar

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801Google Scholar

    [12]

    Moghaddas S, Elahi B, Javanbakht V, 2020 J. Alloys Compd. 821 153519Google Scholar

    [13]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104Google Scholar

    [14]

    Cha B J, Woo T G, Han S W, Saqlain S, Seo H O, Cho H K, Jee Y K, Kim Y D 2018 Catalysts 8 500Google Scholar

    [15]

    Ni M, Leung M, Leung D, Sumathy K 2007 Renew. Sust. Energ. Rev. 11 401Google Scholar

    [16]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electron. Mater. 47 536Google Scholar

    [17]

    Ma J P, Chen L, Wu Z, Chen J, Jia Y M, Hu Y M 2019 Ceram. Int. 45 11934Google Scholar

    [18]

    Yu D F, Liu Z H, Zhang J M, Li S, Zhao Z C, Zhu L F, Liu W S, Lin Y H, Liu H, Zhang Z T 2019 Nano Energy 58 695Google Scholar

    [19]

    Ma J P, Wu Z, Luo W S, Zheng Y Q, Jia Y M, Wang L, Huang H T 2018 Ceram. Int. 44 21835Google Scholar

    [20]

    李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102Google Scholar

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102Google Scholar

    [21]

    You H L, Ma X X, Wu Z, Fei L F, Chen X Q, Yang J, Liu Y S, Jia Y M, Li H M, Wang F F, Huang H T 2018 Nano Energy 52 351Google Scholar

    [22]

    Wu Y L, Ma Y L, Zheng H Y, Ramakrishna S 2021 Materials & Design 211 110164Google Scholar

    [23]

    Hooper T E, Roscow J I, Mathieson A, Khanbareh H, Goetzee-Barral A J, Bell A J 2021 J. Eur. Ceram. Soc. 41 6115Google Scholar

    [24]

    Hong K S, Xu H F, Konishi H, Li X C 2010 J. Phys. Chem. Lett. 1 997Google Scholar

    [25]

    Feng Z Y, Tan O K, Zhu W G, Jia Y M, Luo H S 2008 Appl. Phys. Lett. 92 142910Google Scholar

    [26]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [27]

    Hong K S, Xu H F, Konishi H, Li X C 2012 J. Phys. Chem. C 116 13045Google Scholar

    [28]

    孙奇薇, 薛国梁, 周学凡, 罗行, 周科朝, 张斗 2021 中国有色金属学报 31 17Google Scholar

    Sun Q W, Xue G L, Zhou X F, Luo H, Zhou K C, Zhang D 2021 T. Nonferr. Metal. Soc. 31 17Google Scholar

    [29]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying S J, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [30]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907

    [31]

    Tu S C, Guo Y X, Zhang Y H, Hu C, Zhang T R, Ma T Y, Huang H W 2020 Adv. Funct. Mater. 30 2005158Google Scholar

    [32]

    Wang M Y, Wang B, Huang F, Lin Z Q 2019 Angew. Chem. , Int. Ed. 58 7526Google Scholar

    [33]

    Pan L, Sun S C, Chen Y, Wang P H, Wang J Y, Zhang X W, Zou J J, Wang Z L 2020 Adv. Energy Mater. 10 2000214Google Scholar

    [34]

    Wang X D, Rohrer G S, Li H X, 2018 MRS Bull. 43 946Google Scholar

    [35]

    Liang Z, Yan C F, Rtimi S, Bandara J, 2019 Appl. Catal. B-environ. 241 256Google Scholar

    [36]

    Liu W, Wang M L, Xu C X, Chen S F 2012 Chem. Eng. J. 209 386Google Scholar

    [37]

    Yan Y X, Yang H, Yi Z, Xian T, Li R S, Wang X X 2019 Desalin. Water Treat. 170 349Google Scholar

    [38]

    Wang L K, Wang J F, Ye C Y, Wang K Q, Zhao C R, Wu Y, He Y M 2021 Ultrason. Sonochem. 80 105813Google Scholar

    [39]

    Zheng Y Q, Jia Y M, Li H M, Wu Z, Dong X P 2020 J Mater. Sci. 55 14787Google Scholar

    [40]

    Li L, She X J, Yi J J, Pan L, Xia K X, Wei W, Zhu X W, Chen Z G, Xu H, Li H M 2019 Appl. Surf. Sci. 469 933Google Scholar

    [41]

    Xing P X, Zhang W Q, Chen L, Dai X Q, Zhang J L, Zhao L H, He Y M 2020 Sustain. Energy Fuels 4 1112Google Scholar

    [42]

    Jakob M, Levanon H, Kamat P V 2003 Nano Lett. 3 353Google Scholar

    [43]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar

    [44]

    Lin E Z, Wu J, Qin N, Yuan B W, Bao D H 2018 Catal. Sci. Technol. 8 4788Google Scholar

    [45]

    Li Z Y, Zhang Q L, Wang L K, Yang J Y, Wu Y, He Y M 2021 Ultrason. Sonochem. 78 105729Google Scholar

    [46]

    Lin E Z, Kang Z H, Wu J, Huang R, Qin N, Bao D H 2021 Appl. Catal. B 285 119823Google Scholar

    [47]

    Zhao T L, Bokov A A, Wu J, Wang H, Wang C M, Yu Y, Wang C L, Zeng K Y, Ye Z G, Dong, S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar

    [48]

    Zhang A, Liu Z Y, Xie B, Lu J S, Guo K, Ke S M, Shu L L, Fan H Q 2020 Appl. Catal. B 279 119353Google Scholar

    [49]

    Yuan B W, Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2019 Appl. Mater. Today 17 183Google Scholar

    [50]

    Wu J G, Wu T 2020 ACS Appl. Mater. 12 52231Google Scholar

    [51]

    Pham Thi T P, Yan Z, Nick G, Hamideh K, Nguyen Phuc H D, Xuefan Z, Dou Z, Kechao Z, Steve D, Chris B 2020 iScience 23 101095Google Scholar

    [52]

    Kapat K, Shubhra Q T, Zhou M, Leeuwenburgh S 2020 Adv. Funct. Mater. 30 1909045Google Scholar

    [53]

    Dawson J A, Sinclair D C, Harding J H, Freeman C L 2014 Chem. Mater. 26 6104

    [54]

    Reaney I, Colla E, Setter N 1994 Jpn. J. Appl. Phys. 33 3984Google Scholar

    [55]

    Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2021 Mater. Today Energy 21 100732Google Scholar

    [56]

    Chen L, Jia Y M, Zhao J H, Ma J P, Wu Z, Yuan G L, Cui X Z 2021 J. Colloid Interface Sci. 586 758Google Scholar

    [57]

    Li X, Lin H M, Chen X, Niu H, Zhang T, Liu J Y, Qu F Y 2015 New J. Chem. 39 7863Google Scholar

    [58]

    Yao W, Shen C, Lu Y 2013 Compos. Sci. Technol. 87 8Google Scholar

    [59]

    Hou T, Cao F, Li M L, Wang J L, Lv L L 2020 J. Environ. Sci. Eng. 8 84Google Scholar

    [60]

    Kumar M, Singh G, Vaish R 2021 Mater. Adv 2 4093Google Scholar

    [61]

    Bai S L, Sun L X, Sun J H, Han J Y, Zhang K W, Li Q Q, Luo R X, Li D Q, Chen A 2021 J. Colloid Interface Sci. 587 183Google Scholar

    [62]

    Zhao Z C, Wei L Y, Li S, Zhu L F, Su Y P, Liu Y, Bu Y B, Lin Y H, Liu W S, Zhang Z T 2020 J. Mater. Chem. A 8 16238Google Scholar

    [63]

    Prakash J, Prasad U, Alexander R, Bahadur J, Dasgupta K, Kannan A N M 2019 Langmuir 35 14492Google Scholar

    [64]

    Miao Y, Tian W R, Han J, Li N J, Chen D Y, Xu Q F, Lu J M 2022 Nano Energy 100 107473Google Scholar

    [65]

    Zhou X F, Shen B, Zhai J W, Hedin N 2021 Adv. Funct. Mater. 31 2009594Google Scholar

    [66]

    Guan J F, Jia Y M, Chang T, Ruan L J, Xu T S, Zhang Z, Yuan G L, Wu Z, Zhu G Q 2022 Sep. Purif. Technol. 286 120450Google Scholar

    [67]

    Ji M, Kim J H, Ryu C H, Lee Y I 2022 Nano Energy 95 106993Google Scholar

    [68]

    Fu C, Wu T, Sun G W, Yin G F, Wang C, Ran G X, Song Q J 2023 Appl. Catal. B 323 122196Google Scholar

    [69]

    Khanbabaee B, Mehner E, Richter C, Hanzig J, Zschornak M, Pietsch U, St¨ocker H, Leisegang T, Meyer D C, Gorfman S 2016 Appl. Phys. Lett. 109 222901Google Scholar

    [70]

    Kang Z H, Lin E Z, Qin N, Wu J, Yuan B W, Bao D H 2021 Environ. Sci. :Nano 8 1376Google Scholar

    [71]

    Zhang D F, Su C H, Li H, Pu X P, Geng Y L 2020 J. Phys. Chem. Solids 139 109326Google Scholar

    [72]

    Zhao Q, Xiao H Y, Geng H F, Zheng Z P, Wang J S, Wang F F, Guo Y P 2021 Nano Energy 85 106028Google Scholar

    [73]

    Sun X X, Li R C, Yang Z W, Zhang N, Wu C, Li J H, Chen Y L, Chen Q, Zhang J, Yan H J, Lv X, Wu J G 2022 Appl. Catal. B 313 121471Google Scholar

    [74]

    Li J H, Wei X W, Sun X X, Li R C, Wu C, Liao J Y, Zhang T, Wu J G 2022 ACS Appl. Mater. Inter. 14 46765Google Scholar

    [75]

    Liu Z, Wen X R, Wang Y, Jia Y M, Wang F F, Yuan G L, Wang Y J 2022 Adv. Mater. Technol. 7 2101484Google Scholar

    [76]

    Ruan L J, Jia Y M, Guan J F, Xue B, Huang S H, Wang Z H, Fu Y H, Wu Z 2022 J. Clean. Prod. 345 131060Google Scholar

    [77]

    Wang S Y, Gao Y Y, Miao S, Liu T F, Mu L C, Li R G, Li R G, Fan F T, Li C 2017 J. Am. Chem. Soc. 139 11771Google Scholar

    [78]

    Chen S, Zhu P, Mao L J, Wu W C, Lin H, Xu D L, Lu X Y, Shi J L 2023 Adv. Mater. 2208256

    [79]

    Wang Y, Wen X R, Jia Y M, Huang M, Wang F F, Zhang X H, Bai Y Y, Yuan G L, Wang Y J 2020 Nat. Commun. 11 1328Google Scholar

  • [1] Wang Pan, Zong Yi-Xin, Wen Hong-Yu, Xia Jian-Bai, Wei Zhong-Ming. Electronic properties of two-dimensional Janus atomic crystal. Acta Physica Sinica, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [2] Cui Yong, Wu Ming, Song Xiao, Huang Yu-Ping, Jia Qi, Tao Yun-Fei, Wang Chen. Research progress of small low-frequency transmitting antenna. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [3] Yao Kuan-Ming, Yao Jing-Yi, Hai Zhao, Li Deng-Feng, Xie Zhao-Qian, Yu Xin-Ge. Stretchable self-powered epidermal electronics from piezoelectric rubber for tactile sensing. Acta Physica Sinica, 2020, 69(17): 178701. doi: 10.7498/aps.69.20200664
    [4] Wei Xiao-Wei, Tao Hong, Zhao Chun-Lin, Wu Jia-Gang. Piezoelectric and electrocaloric properties of high performance potassium sodium niobate-based lead-free ceramics. Acta Physica Sinica, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [6] Deng Chang-Fa, Yan Shao-An, Wang Dong, Peng Jin-Feng, Zheng Xue-Jun. Optically modulated electromechanical coupling properties of single GaN nanobelt based on conductive atomic force microscopy. Acta Physica Sinica, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [7] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Jiang Juan-Na, Chen Xin. Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials. Acta Physica Sinica, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [8] Li Lin-Li,  Xue Chun-Xia. Chaotic motion of piezoelectric material hyperbolic shell under thermoelastic coupling. Acta Physica Sinica, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [9] Wu Jingen, Gao Xiangyu, Chen Jianguo, Wang Chun-Ming, Zhang Shujun, Dong Shuxiang. Review of high temperature piezoelectric materials, devices, and applications. Acta Physica Sinica, 2018, 67(20): 207701. doi: 10.7498/aps.67.20181091
    [10] Zhu Zhen-Ye. Piezoelectric effect mechanism in lead-free tetragonal perovskite short-period superlattices. Acta Physica Sinica, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [11] Liao Tao, Sun Xiao-Wei, Song Ting, Tian Jun-Hong, Kang Tai-Feng, Sun Wei-Bin. Tunable bandgaps in novel two-dimensional piezoelectric phononic crystal slab. Acta Physica Sinica, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [12] Zhou Yong, Li Chun-Jian, Pan Yu-Rong. Magnetoelectric effect analysis of magnetostrictive/piezoelectric laminated composites. Acta Physica Sinica, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [13] Hong Yuan-Ting, Ma Jiang-Ping, Wu Zheng, Ying Jing-Shi, You Hui-Lin, Jia Yan-Min. Piezo-electrochemical coupling of AgNbO3 piezoelectric nanomaterials. Acta Physica Sinica, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [14] Tang Li-Guo. Mode identification via temperature variation in resonant ultrasonic spectroscopy technique for piezoelectric material. Acta Physica Sinica, 2017, 66(2): 027703. doi: 10.7498/aps.66.027703
    [15] Zhang Tian-Le, Huang Xi, Zheng Kai, Zhang Xin-Wu, Wang Yu-Jie, Wu Li-Ming, Zhang Xiao-Qing, Zheng Jie, Zhu Biao. Influence of polarization voltage on piezoelectric performance of polypropylene piezoelectret films. Acta Physica Sinica, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [16] Zhang Xin-Wu, Zhang Xiao-Qing. Piezoelectric and acoustic behavior of polypropylene piezoelectret films. Acta Physica Sinica, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [17] Chen Lei, Li Ping, Wen Yu-Mei, Wang Dong. Effect of High-permeability FeCuNbSiB on magnetoelectric property of magnetostrictive/piezoelectric composite. Acta Physica Sinica, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [18] Bian Lei-Xiang, Wen Yu-Mei, Li Ping. Analysis of magneto-mechano-electronic coupling factors in magnetostrictive/piezoelectric laminated composite. Acta Physica Sinica, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [19] Fan Jun-Feng, Zhang Ning. Magnetoelectric cuopling in laminate composites Tb1-xDyxFe2-y and Fe-doped BaTiO3. Acta Physica Sinica, 2007, 56(10): 6056-6060. doi: 10.7498/aps.56.6056
    [20] Chen Gang-Jin, Xia Zhong-Fu. Study on piezoelectricity of hybrid films consisting of porous PTFE and Teflon FEP. Acta Physica Sinica, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
Metrics
  • Abstract views:  6947
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2022
  • Accepted Date:  25 February 2023
  • Available Online:  03 March 2023
  • Published Online:  20 April 2023

/

返回文章
返回