搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电材料全矩阵材料常数超声谐振谱反演技术中的变温模式识别

汤立国

引用本文:
Citation:

压电材料全矩阵材料常数超声谐振谱反演技术中的变温模式识别

汤立国

Mode identification via temperature variation in resonant ultrasonic spectroscopy technique for piezoelectric material

Tang Li-Guo
PDF
导出引用
  • 利用传统的超声脉冲-回波与电谐振技术定征压电材料全矩阵材料参数,必须采用多块尺寸差异显著的样品,故很可能导致定征结果不自洽.超声谐振谱(RUS)技术仅需一块样品即可对压电材料全矩阵材料参数进行定征,故可确保定征结果的自洽.由于实际测量谐振谱中模式混叠与遗漏现象不可避免,使得谐振谱中谐振模式的准确识别成为RUS技术顺利实施的最大难点.本文提出一种谐振模式的变温识别技术.温度变化可导致压电体材料参数发生变化,材料参数的改变可影响各谐振模式的振动频率,且对不同谐振模式影响不一致,因此改变测量环境温度,有可能使得所测量超声谐振谱中某些原本混叠的模式分开或使得某些原本遗漏的模式出现.压电陶瓷(PZT-8)的实验结果表明,该技术可有效提高谐振谱中谐振模式识别准确率,从而保证了RUS反演的可靠性.
    The full matrix material constants of piezoelectric materials should be characterized first before they have been used to make actuators or sensors. Up to now, they are usually determined by the ultrasonic pulse-echo and electric impedance resonance techniques through using multiple samples with drastically different sizes. However, the constants determined by the aforementioned techniques are probably inconsistent because the sample-to-sample variation cannot be eliminated. The technique of resonant ultrasonic spectroscopy (RUS) only needs one sample to determine the full matrix constants of piezoelectric material. Therefore, the consistency of the constants is guaranteed. During the implementation of the RUS technique, the elastic stiffness cijE and piezoelectric constants cij can be determined from the resonance modes identified from the resonant ultrasonic spectrum. The free and clamped dielectric constants cannot be determined by the RUS technique because they have very weak influence on resonance frequency. However, they can be directly measured from the same sample by using an impedance analyzer. To ensure the reliable inversion of material constants, enough resonance modes should be identified from the measured resonant ultrasonic spectrum. However, there are many missing and overlapped modes in the spectrum, which makes mode identification become a biggest obstacle to the implementation of the RUS technique. The adjacent modes may overlap if the resonance frequencies corresponding to them have a very small difference. In addition, the lower the mechanical quality factor QM, the more likely to overlap the adjacent modes are. During the RUS measurement, the rectangular parallelepiped sample is placed between the transmitting and receiving transducers with contacts only at the opposite corners of the sample. Resonance modes would not be detected if the receiving point, i.e., one corner of the sample, is the node of these modes. Therefore, there are missing modes in the resonant ultrasonic spectrum. To overcome the difficulty in identifying the modes, caused by modes missing and overlapping, the mode identifying method via temperature variation is presented in this study. Note that a change of temperature may change the material properties of a piezoelectric sample. The material properties have a great influence on the resonance frequency of the sample. Moreover, the influences corresponding to resonance modes are different. Therefore, the variation of temperature may make the overlapped modes separated from each other and the missing modes appear, namely, the missing and overlapped modes may be identified by comparing the resonant ultrasonic spectra measured at different temperatures. The experimental results of piezoelectric ceramics (PZT-8) show that this method can effectively improve the accuracy of mode identification and guarantee the reliability of inversion in the RUS technique.
      通信作者: 汤立国, liguotang@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374245,11674270)资助的课题.
      Corresponding author: Tang Li-Guo, liguotang@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374245, 11674270).
    [1]

    Muralt P 2000 J. Micromech. Microeng. 10 136

    [2]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87

    [3]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301

    [4]

    Zhang S J, Lee S M, Kim D H, Lee H Y, Shrout T R 2008 J. Am. Ceram. Soc. 91 683

    [5]

    Sun E W, Zhang R, Wu F M, Cao W W 2013 J. Alloys Compd. 553 267

    [6]

    Sun E W 2011 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[孙恩伟2011博士学位论文(哈尔滨:哈尔滨工业大学)]

    [7]

    Topolov V Y 2010 Appl. Phys. Lett. 96 196101

    [8]

    Topolov V Y, Bowen C R 2011 J. Appl. Phys. 109 094107

    [9]

    Tang L G, Cao W W 2015 Appl. Phys. Lett. 106 052902

    [10]

    Ohno I 1990 Phys. Chem. Miner. 17 371

    [11]

    Leisure R G, Willis F A 1997 J. Phys.:Condens. Matter 9 6001

    [12]

    Zadler B J, Rousseau J H L, Scales J A, Smith M L 2004 Geophys. J. Int. 156 154

    [13]

    Migliori A, Maynard J D 2005 Rev. Sci. Instrum. 76 121301

    [14]

    Li S Y, Zheng L M, Jiang W H, Sahul R, Gopalan V, Cao W W 2013 J. Appl. Phys. 114 104505

    [15]

    Frazer D B, LeCraw R C 1964 Rev. Sci. Instrum. 35 1113

    [16]

    Ogi H, Kawasaki Y, Hirao M, Ledbetter H 2002 J. Appl. Phys. 92 2451

    [17]

    Ogi H, Ohmori T, Nakamura N, Hirao M 2006 J. Appl. Phys. 100 053511

    [18]

    Nakamura N, Ogi H, Hirao M 2012 J. Appl. Phys. 111 013509

    [19]

    Tang L G, Tian H, Zhang Y, Cao W W 2016 Appl. Phys. Lett. 108 082901

    [20]

    Mochizuki E 1987 J. Phys. Earth 35 159

  • [1]

    Muralt P 2000 J. Micromech. Microeng. 10 136

    [2]

    Zhou Q F, Lam K H, Zheng H R, Qiu W B, Shung K K 2014 Prog. Mater. Sci. 66 87

    [3]

    Zhang S J, Li F 2012 J. Appl. Phys. 111 031301

    [4]

    Zhang S J, Lee S M, Kim D H, Lee H Y, Shrout T R 2008 J. Am. Ceram. Soc. 91 683

    [5]

    Sun E W, Zhang R, Wu F M, Cao W W 2013 J. Alloys Compd. 553 267

    [6]

    Sun E W 2011 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[孙恩伟2011博士学位论文(哈尔滨:哈尔滨工业大学)]

    [7]

    Topolov V Y 2010 Appl. Phys. Lett. 96 196101

    [8]

    Topolov V Y, Bowen C R 2011 J. Appl. Phys. 109 094107

    [9]

    Tang L G, Cao W W 2015 Appl. Phys. Lett. 106 052902

    [10]

    Ohno I 1990 Phys. Chem. Miner. 17 371

    [11]

    Leisure R G, Willis F A 1997 J. Phys.:Condens. Matter 9 6001

    [12]

    Zadler B J, Rousseau J H L, Scales J A, Smith M L 2004 Geophys. J. Int. 156 154

    [13]

    Migliori A, Maynard J D 2005 Rev. Sci. Instrum. 76 121301

    [14]

    Li S Y, Zheng L M, Jiang W H, Sahul R, Gopalan V, Cao W W 2013 J. Appl. Phys. 114 104505

    [15]

    Frazer D B, LeCraw R C 1964 Rev. Sci. Instrum. 35 1113

    [16]

    Ogi H, Kawasaki Y, Hirao M, Ledbetter H 2002 J. Appl. Phys. 92 2451

    [17]

    Ogi H, Ohmori T, Nakamura N, Hirao M 2006 J. Appl. Phys. 100 053511

    [18]

    Nakamura N, Ogi H, Hirao M 2012 J. Appl. Phys. 111 013509

    [19]

    Tang L G, Tian H, Zhang Y, Cao W W 2016 Appl. Phys. Lett. 108 082901

    [20]

    Mochizuki E 1987 J. Phys. Earth 35 159

  • [1] 贾艳敏, 王晓星, 张祺昌, 武峥. 压-电-化学耦合增强策略及机理研究进展. 物理学报, 2023, 72(8): 087701. doi: 10.7498/aps.72.20222078
    [2] 张海燕, 徐心语, 马雪芬, 朱琦, 彭丽. 超声图像中复合材料褶皱形态的Mask-RCNN识别方法. 物理学报, 2022, 71(7): 074302. doi: 10.7498/aps.71.20212009
    [3] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器. 物理学报, 2021, 70(1): 017701. doi: 10.7498/aps.70.20201352
    [4] 姚宽明, 姚靖仪, 海照, 李登峰, 解兆谦, 于欣格. 用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件. 物理学报, 2020, 69(17): 178701. doi: 10.7498/aps.69.20200664
    [5] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [6] 李林利, 薛春霞. 压电材料双曲壳热弹耦合作用下的混沌运动. 物理学报, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [7] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘. 高温压电材料、器件与应用. 物理学报, 2018, 67(20): 207701. doi: 10.7498/aps.67.20181091
    [8] 蔡伟, 邢俊晖, 杨志勇. 磁光材料Verdet常数贡献性的讨论. 物理学报, 2017, 66(18): 187801. doi: 10.7498/aps.66.187801
    [9] 刘婧, 徐卫疆, 胡文祥. 三层介质超声谐振模式随材料和界面粘接性能变化的演变规律. 物理学报, 2016, 65(7): 074301. doi: 10.7498/aps.65.074301
    [10] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [11] 张睿, 羊亚平. 负介电常数材料和负磁导率材料的双层结构中电磁波模式分析. 物理学报, 2010, 59(4): 2451-2456. doi: 10.7498/aps.59.2451
    [12] 林政, 刘旻. 具有立方晶系结构的多晶体材料的弹性常数——Y弹性常数. 物理学报, 2009, 58(6): 4096-4102. doi: 10.7498/aps.58.4096
    [13] 林政, 刘旻. 具有六方晶系结构的多晶体材料弹性常数——Y弹性常数. 物理学报, 2009, 58(12): 8511-8521. doi: 10.7498/aps.58.8511
    [14] 薛春荣, 易葵, 齐红基, 邵建达, 范正修. 氟化物材料在深紫外波段的光学常数. 物理学报, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [15] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [16] 王崇杰, 包东敏, 程 松, 张爱莲. 核材料γ能谱指纹模糊识别机理研究. 物理学报, 2008, 57(9): 5361-5365. doi: 10.7498/aps.57.5361
    [17] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料. 物理学报, 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [18] 董丽娟, 江海涛, 杨成全, 石云龙. 负介电常数材料与负磁导率材料双层结构的透射特性. 物理学报, 2007, 56(8): 4657-4660. doi: 10.7498/aps.56.4657
    [19] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [20] 探伤组. 采用α-碘酸锂作为超声探头压电材料的试验. 物理学报, 1976, 25(1): 82-85. doi: 10.7498/aps.25.82
计量
  • 文章访问数:  6358
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-20
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-01-20

/

返回文章
返回