-
BaTiO3 (BTO) is a typical studying object both in ferroelectrics and in material science. By the GW method, optical property of BTO is investigated, and its volume effect under the case of iso-strain is also studied. It is found that the results of excited states are closer to the experimental results with the consideration of electron-hole interaction in the framework of GW method. Considering the volume effect, we obtain that the red shift of the peaks of optical absorption occurs under the expansion of volume, and the blue shift appears when the BTO is compressed. At the same time, the polarization and the hybridization between d orbital of Ti atom and p orbital of O atom are enhanced for the case of volume expansion, however, things will be opposite under the compression of volume. Furthermore, the volume effect in the iso-strain case is less dramatic than in the iso-stress case.
-
Keywords:
- BaTiO3 /
- optical property /
- volume effect /
- GW method
[1] 钟维烈 1998 铁电体物理学(北京: 科学出版社)
Zhong W L 1998 Ferroelectric Physics (Beijing: Science Press) (in Chinese)
[2] Cohen R E 1992 Nature 358 136Google Scholar
[3] Ma C, Jin K J, Ge C, Yang G Z 2018 Phys. Rev. B 97 115103Google Scholar
[4] Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar
[5] Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 122 9275
[6] Khenata R, Sahnoun M, Baltache H, Rerat M, Rashek A H, Illes N, Bouhafs B 2005 Solid State Commun. 136 120Google Scholar
[7] Hosseini S M, Movlarooy T, Kompany A 2005 Euro. Phys. J B 46 463Google Scholar
[8] Gupta G, Nautiyal T, Auluck S 2004 Phys. Rev. B 69 052101
[9] Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 8828Google Scholar
[10] Liu Q J, Zhang N C, Liu F S, Wang H Y, Liu Z T 2013 Opt. Mater. 35 2629Google Scholar
[11] Wemple S H 1970 Phys. Rev. B 2 2679Google Scholar
[12] Piskunov S, Heifets E, Eglitis R I, Borstel G 2004 Comp. Mater. Sci. 29 165Google Scholar
[13] Hybertsen M S, Louie S G 1986 Phy. Rev. B 34 5390Google Scholar
[14] Rohlfing M, Louie S G 2000 Phy. Rev. B 62 4927
[15] Deslippe J, Samsonidze, Strubbe D A, Jain M, Cohen M L, Louie S G 2012 Comp. Mater. Sci. 183 1269
[16] Sanna S, Thierfelder C, Wippermann S, Sinha T P, Schmidt W G 2011 Phys. Rev. B 83 054112Google Scholar
[17] Kornev I A, Bellaiche L, Bouvier P, Janolin P E, Dkhil B, Kreisel J 2005 Phys. Rev. Lett. 95 196804Google Scholar
[18] Moriwake H, Koyama Y, Matsunaga K, Hirayama T, Tanaka I 2008 J Phys.: Condens. Mat. 20 345207Google Scholar
[19] Wang X X, Wang C L 2003 Chin. J. Chem. 21 1130
[20] Nguyen M D, Dekkers M, Houwman E, Steenwelle R, Wan X, Roelofs A, Schmitz-Kempen T, Rijnders G 2011 Appl. Phys. Lett. 99 252904Google Scholar
[21] Wen Z, Qiu X B, Li C, Zheng C Y, Ge X Y, Li A D, Wu D 2014 Appl. Phys. Lett. 104 042907Google Scholar
[22] Li W, Weng G J 2001 J. Appl. Phys. 90 2484Google Scholar
[23] Dieguez O, Tinte S, Antons A, Bungaro C, Neaton J B, Rabe K M, Vanderbilt D 2004 Phys. Rev. B 69 212101Google Scholar
[24] Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240Google Scholar
[25] Van Helvoort A T J, Da H L, Soleim B G, Holmestad R, Tybell T 2005 Appl. Phys. Lett. 86 092907Google Scholar
[26] Chen A, Hu J M, Lu P, Yang T N, Zhang W R, Li L G, Ahmed T, Enriquez E, Weigand W, Su Q, Wang H Y, Zhu J Y, MacManus-Driscoll J L, Chen L Q, Yarotski D, Jia Q X 2016 Sci. Adv. 2 e1600245Google Scholar
[27] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[28] Perdew J P, Yue W 1986 Phys. Rev. B 33 8820
[29] Gao S Y, Yang L 2017 Phys. Rev. B 96 155410Google Scholar
[30] Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 1786
[31] Bilc D I, Orlando R, Shaltaf R, Rignanese G M, Íñiguez J, Ghosez P 2008 Phys. Rev. B 77 165107Google Scholar
[32] Wang F G, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903Google Scholar
[33] Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar
[34] Chernova E, Pacherova O, Chvostova D, Dejneka A, Kocourek T, Jelinek M, Tyunina M 2015 Appl. Phys. Lett. 106 192903Google Scholar
-
图 4 不同体积BTO的介电常数虚部谱(
$\epsilon_2^{\bot}$ 为垂直于极化方向即xy平面内的介电常数虚部,$\epsilon_2^{^{_{/\!/}}}$ 为z方向的介电常数虚部)Figure 4. Spectrum of imagine part of dielectric constant for selected BTO volumes, where
$\epsilon_2^{\bot}$ corresponds the direction perpendicular to the polarization, and$\epsilon_2^{^{_{/\!/}}}$ stands for the direction parallel to the polarization图 5 不同体积下BTO块材的光学吸收谱(
$\alpha^{\bot}$ 为垂直于极化方向即xy平面内的光学吸收系数,$\alpha^{^{_{/\!/}}}$ 为z方向的吸收系数)Figure 5. Spectrum of optical absorption of BTO for selected volumes, where
$\alpha^{\bot}$ corresponds the direction perpendicular to the polarization, and$\alpha^{^{_{/\!/}}}$ stands for the direction parallel to the polarization -
[1] 钟维烈 1998 铁电体物理学(北京: 科学出版社)
Zhong W L 1998 Ferroelectric Physics (Beijing: Science Press) (in Chinese)
[2] Cohen R E 1992 Nature 358 136Google Scholar
[3] Ma C, Jin K J, Ge C, Yang G Z 2018 Phys. Rev. B 97 115103Google Scholar
[4] Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar
[5] Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 122 9275
[6] Khenata R, Sahnoun M, Baltache H, Rerat M, Rashek A H, Illes N, Bouhafs B 2005 Solid State Commun. 136 120Google Scholar
[7] Hosseini S M, Movlarooy T, Kompany A 2005 Euro. Phys. J B 46 463Google Scholar
[8] Gupta G, Nautiyal T, Auluck S 2004 Phys. Rev. B 69 052101
[9] Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 8828Google Scholar
[10] Liu Q J, Zhang N C, Liu F S, Wang H Y, Liu Z T 2013 Opt. Mater. 35 2629Google Scholar
[11] Wemple S H 1970 Phys. Rev. B 2 2679Google Scholar
[12] Piskunov S, Heifets E, Eglitis R I, Borstel G 2004 Comp. Mater. Sci. 29 165Google Scholar
[13] Hybertsen M S, Louie S G 1986 Phy. Rev. B 34 5390Google Scholar
[14] Rohlfing M, Louie S G 2000 Phy. Rev. B 62 4927
[15] Deslippe J, Samsonidze, Strubbe D A, Jain M, Cohen M L, Louie S G 2012 Comp. Mater. Sci. 183 1269
[16] Sanna S, Thierfelder C, Wippermann S, Sinha T P, Schmidt W G 2011 Phys. Rev. B 83 054112Google Scholar
[17] Kornev I A, Bellaiche L, Bouvier P, Janolin P E, Dkhil B, Kreisel J 2005 Phys. Rev. Lett. 95 196804Google Scholar
[18] Moriwake H, Koyama Y, Matsunaga K, Hirayama T, Tanaka I 2008 J Phys.: Condens. Mat. 20 345207Google Scholar
[19] Wang X X, Wang C L 2003 Chin. J. Chem. 21 1130
[20] Nguyen M D, Dekkers M, Houwman E, Steenwelle R, Wan X, Roelofs A, Schmitz-Kempen T, Rijnders G 2011 Appl. Phys. Lett. 99 252904Google Scholar
[21] Wen Z, Qiu X B, Li C, Zheng C Y, Ge X Y, Li A D, Wu D 2014 Appl. Phys. Lett. 104 042907Google Scholar
[22] Li W, Weng G J 2001 J. Appl. Phys. 90 2484Google Scholar
[23] Dieguez O, Tinte S, Antons A, Bungaro C, Neaton J B, Rabe K M, Vanderbilt D 2004 Phys. Rev. B 69 212101Google Scholar
[24] Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240Google Scholar
[25] Van Helvoort A T J, Da H L, Soleim B G, Holmestad R, Tybell T 2005 Appl. Phys. Lett. 86 092907Google Scholar
[26] Chen A, Hu J M, Lu P, Yang T N, Zhang W R, Li L G, Ahmed T, Enriquez E, Weigand W, Su Q, Wang H Y, Zhu J Y, MacManus-Driscoll J L, Chen L Q, Yarotski D, Jia Q X 2016 Sci. Adv. 2 e1600245Google Scholar
[27] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[28] Perdew J P, Yue W 1986 Phys. Rev. B 33 8820
[29] Gao S Y, Yang L 2017 Phys. Rev. B 96 155410Google Scholar
[30] Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 1786
[31] Bilc D I, Orlando R, Shaltaf R, Rignanese G M, Íñiguez J, Ghosez P 2008 Phys. Rev. B 77 165107Google Scholar
[32] Wang F G, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903Google Scholar
[33] Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar
[34] Chernova E, Pacherova O, Chvostova D, Dejneka A, Kocourek T, Jelinek M, Tyunina M 2015 Appl. Phys. Lett. 106 192903Google Scholar
Catalog
Metrics
- Abstract views: 12686
- PDF Downloads: 183
- Cited By: 0