Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entropy spectrum and area spectrum of Kerr black hole in gravity's rianbow

Liu Cheng-Zhou Deng Yue-Jun Luo Ye-Cheng

Citation:

Entropy spectrum and area spectrum of Kerr black hole in gravity's rianbow

Liu Cheng-Zhou, Deng Yue-Jun, Luo Ye-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Black hole spectroscopy is an important content in the quantum properties of black holes. In this paper, we use the adiabatic invariants of black holes to investigate the entropy spectrum and area spectrum of the Kerr black hole in gravity's rainbow. Firstly, by considering the particles passing through the event horizon, the adiabatic invariance action for the modified Kerr black hole is calculated. Here, the Euclidean coordinate and the period of the Euclidean time of a loop about the event horizon are used. Combined the obtained adiabatic invariants with the Bohr-Sommerfen quantization condition, the equally spaced entropy spectra that are the same as the original Beckenstein spectra are derived. The entropy spectrum of the gravity's rainbow is independent of the test particle energy. Next, using the first law of the black hole thermodynamics and the black hole entropy spectrum, the area spectrum of the modified Kerr black hole is studied. Due to the quantum gravity effect of the gravity's rainbow, the obtained area spectrum is different from the original Beckenstein spectrum. The present area spectrum is non-equidistant and dependent on the horizon area of the black hole. With the decrease of black hole area, the area space gradually turns smaller. When the black hole reaches the minimum area on a Planck scale, the area quantum is zero. Thus the black hole area no longer decrease and a remnant of the black hole radiation appears. In the case of a large black hole, the correction of the area spectrum to the equally spaced spectra can be ignored, and the area spectrum of the Kerr black hole in gravity's rainbow can return to the original Beckenstein spectrum. It is also shown that like the entropy spectrum, the area spectrum of the gravity's rainbow does not depend on the energy of the test particles either. In addition, the entropy of the modified Kerr black hole in gravity's rainbow is discussed by using the first law of the black hole thermodynamics. The black hole entropy with quantum correction items as the area reciprocal to the Beckenstein-Hawking entropy is derived and the relation between the quantum correction items and the area is discussed. In addition, the consistency between the entropy correction and the area correction for the modified black hole is analyzed. The current research supports that in different spacetimes including quantum corrected spacetimes, the black hole entropy spectrum has the universality, but the black hole area spectrum is dependent on the area due to the spacetime quantum properties.
      Corresponding author: Liu Cheng-Zhou, czlbj20@aliyun.com
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. LY14A030001) and the National Natural Science Foundation of China (Grant No. 11373020).
    [1]

    Bekenstein J D 1972 Lett. Nuovo. Cim. 4 737

    [2]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [3]

    Bekenstein J D 1974 Lett. Nuovo Cim. 11 467

    [4]

    Bekenstein J D 1998 arXiv:gr-qc/9808028

    [5]

    Kunstatter G 2003 Phys. Rev. Lett. 90 161301

    [6]

    Nollert H P 1999 Class. Quant. Grav. 16 R159

    [7]

    Hod S 1998 Phys. Rev. Lett. 81 4293

    [8]

    Hod S 1998 Phys. Rev. D 59 024014

    [9]

    Maggiore M 2008 Phys. Rev. Lett. 100 141301

    [10]

    Wang B, Lin C Y, Molina C 2004 Phys. Rev. D 70 064025

    [11]

    Medved A J M 2008 Class. Quantum Grav. 25 205014

    [12]

    Vagenas E C 2008 JHEP 2008 073

    [13]

    Ropotenko K 2010 Phys. Rev. D 82 044037

    [14]

    Kothawala D, Padmanabhan T, Sarkar S 2008 Phys. Rev. D 78 104018

    [15]

    Wei S W, Li R, Liu Y X, Ren J R 2009 JHEP 2009 076

    [16]

    Li W B, Xu L X, Lu J B 2009 Phys. Lett. B 676 177

    [17]

    Jing J L, Ding C K 2008 Chin. Phys. Lett. 25 858

    [18]

    Pan Q Y, Jing J L 2005 Chin. Phys. B 14 268

    [19]

    Chen J H, Wang Y J 2010 Chin. Phys. B 19 060401

    [20]

    Wei S W, Liu Y X, Yang K, Zhong Y 2010 Phys. Rev. D 81 104042

    [21]

    Liu C Z 2012 Eur. Phys. J. C 72 2009

    [22]

    Barvinsky A, Das S, Kunstatter G 2001 Class. Quant. Grav. 18 4845

    [23]

    Barvinsky A, Das S, Kunstatter G 2002 Found. Phys. 32 1851

    [24]

    Ropotenko K 2009 Phys. Rev. D 80 044022

    [25]

    Kwon Y, Nam S 2010 Class. Quant. Grav. 27 125007

    [26]

    Louko J, Makela J 1996 Phys. Rev. D 54 4982

    [27]

    Majhi B R, Vagenas E C 2011 Phys. Lett. B 701 623

    [28]

    Liu C Z 2012 Chin. Phys. B 21 070401

    [29]

    Li L 2012 Int. J. Ther. Phys. 51 1924

    [30]

    Liu C Z 2012 Mod. Phys. Lett. A 27 1250139

    [31]

    Zeng X X, Liu W B 2012 Eur. Phys. J. C 72 1987

    [32]

    Qi D J 2014 Astrophys. Space. Sci. 349 33

    [33]

    Garay L J 1995 Int. J. Mod. Phys. A 10 145

    [34]

    Gross D J, Mende P F 1988 Nucl. Phys. B 303 407

    [35]

    Witten E 1997 Phys. Today 49 24

    [36]

    Smolin L 2004 arXiv:hep-th.0408048

    [37]

    Ali A F, Faizal M, Khalil M M 2014 JHEP 2014 159

    [38]

    Ali A F, Faizal M, Khalil M M 2015 Phys. Lett. B 743 295

    [39]

    Gangopadhyay S, Dutta A, Saha A 2014 Gen. Rel. Grav. 46 1661

    [40]

    Dutta A, Gangopadhyay S 2014 Gen. Rel. Grav. 46 1747

    [41]

    Gangopadhyay S, Dutta A, Faizal M 2015 Euro. Phys. Lett. 112 20006

    [42]

    Dutta A, Gangopadhyay S 2016 Int. J. Theo. Phys. 55 2746

    [43]

    Ma H, Li J 2017 Chin. Phys. B 26 60401

    [44]

    Chen N S, Zhang J Y 2015 Chin. Phys. B 24 020401

    [45]

    Ibungochouba S T 2015 Chin. Phys. B 24 70401

    [46]

    Ye B B, Chen J H, Wang Y J 2017 Chin. Phys. B 26 90202

    [47]

    Amelino-Camelia G 2002 Int. J. Mod. Phys. D 11 35

    [48]

    Amelino-Camelia G 2001 Phys. Lett. B 510 255

    [49]

    Kowalski-Glikman J 2001 Phys. Lett. A 286 391

    [50]

    Magueijo J, Smolin L 2002 Phys. Rev. Lett. 88 190403

    [51]

    Magueijo J, Smolin L 2003 Phys. Rev. D 67 044017

    [52]

    Kimberly D, Magueijo J, Medeiros J 2004 Phys. Rev. D 70 084007

    [53]

    Magueijo J, Smolin L 2004 Class. Quant. Grav. 21 1725

    [54]

    Heuson C 2006 arXiv:gr-qc/0606124

    [55]

    Amelino-Camalia G, Ellis N E, Mavromatos D V 1997 Int. J. Mod. Phys. A 12 607

    [56]

    Amelino-Camalia G 2013 Living. Rev. Rel. 16 5

    [57]

    Altamirano N, Kubiznak D, Mann R B, Sherkatghanad Z 2014 Galaxies 2 89

    [58]

    Ling Y, Li X, Hu B 2007 Mod. Phys. Lett. A 22 2749

    [59]

    Ling Y, Hu B, Li X 2006 Phys. Rev. D 73 087702

    [60]

    Liu C Z, Zhu J Y 2008 Gen. Relat. Gravit. 40 1899

    [61]

    Zhang J Y, Zhao Z 2005 Mod. Phys. Lett. A 20 1673

    [62]

    Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003

    [63]

    Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752

    [64]

    Adler R J, Chen P, Santiago D I 2001 Gen. Rel. Grav. 33 2101

    [65]

    Amelino-Camelia G, Arzano M, Procaccini A 2004 Phys. Rev. D 70 107501

    [66]

    Ali A F, Mohammed M F, Khalil M 2015 Nucl. Phys. B 894 341

    [67]

    Ali A F 2014 Phys. Rev. D 89 104040

    [68]

    Kaul R K, Majumder P 2000 Phys. Rev. Lett. 84 5255

    [69]

    Don N 2005 Page, New. J. Phys. 7 203

    [70]

    Jing J L, Yan M L 1999 Phys.Rev. D 60 084015

    [71]

    Carlip S 2000 Class. Quant. Grav. 17 4175

    [72]

    Jing J L, Yan M L 2000 Phys. Rev. D 63 024003

  • [1]

    Bekenstein J D 1972 Lett. Nuovo. Cim. 4 737

    [2]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [3]

    Bekenstein J D 1974 Lett. Nuovo Cim. 11 467

    [4]

    Bekenstein J D 1998 arXiv:gr-qc/9808028

    [5]

    Kunstatter G 2003 Phys. Rev. Lett. 90 161301

    [6]

    Nollert H P 1999 Class. Quant. Grav. 16 R159

    [7]

    Hod S 1998 Phys. Rev. Lett. 81 4293

    [8]

    Hod S 1998 Phys. Rev. D 59 024014

    [9]

    Maggiore M 2008 Phys. Rev. Lett. 100 141301

    [10]

    Wang B, Lin C Y, Molina C 2004 Phys. Rev. D 70 064025

    [11]

    Medved A J M 2008 Class. Quantum Grav. 25 205014

    [12]

    Vagenas E C 2008 JHEP 2008 073

    [13]

    Ropotenko K 2010 Phys. Rev. D 82 044037

    [14]

    Kothawala D, Padmanabhan T, Sarkar S 2008 Phys. Rev. D 78 104018

    [15]

    Wei S W, Li R, Liu Y X, Ren J R 2009 JHEP 2009 076

    [16]

    Li W B, Xu L X, Lu J B 2009 Phys. Lett. B 676 177

    [17]

    Jing J L, Ding C K 2008 Chin. Phys. Lett. 25 858

    [18]

    Pan Q Y, Jing J L 2005 Chin. Phys. B 14 268

    [19]

    Chen J H, Wang Y J 2010 Chin. Phys. B 19 060401

    [20]

    Wei S W, Liu Y X, Yang K, Zhong Y 2010 Phys. Rev. D 81 104042

    [21]

    Liu C Z 2012 Eur. Phys. J. C 72 2009

    [22]

    Barvinsky A, Das S, Kunstatter G 2001 Class. Quant. Grav. 18 4845

    [23]

    Barvinsky A, Das S, Kunstatter G 2002 Found. Phys. 32 1851

    [24]

    Ropotenko K 2009 Phys. Rev. D 80 044022

    [25]

    Kwon Y, Nam S 2010 Class. Quant. Grav. 27 125007

    [26]

    Louko J, Makela J 1996 Phys. Rev. D 54 4982

    [27]

    Majhi B R, Vagenas E C 2011 Phys. Lett. B 701 623

    [28]

    Liu C Z 2012 Chin. Phys. B 21 070401

    [29]

    Li L 2012 Int. J. Ther. Phys. 51 1924

    [30]

    Liu C Z 2012 Mod. Phys. Lett. A 27 1250139

    [31]

    Zeng X X, Liu W B 2012 Eur. Phys. J. C 72 1987

    [32]

    Qi D J 2014 Astrophys. Space. Sci. 349 33

    [33]

    Garay L J 1995 Int. J. Mod. Phys. A 10 145

    [34]

    Gross D J, Mende P F 1988 Nucl. Phys. B 303 407

    [35]

    Witten E 1997 Phys. Today 49 24

    [36]

    Smolin L 2004 arXiv:hep-th.0408048

    [37]

    Ali A F, Faizal M, Khalil M M 2014 JHEP 2014 159

    [38]

    Ali A F, Faizal M, Khalil M M 2015 Phys. Lett. B 743 295

    [39]

    Gangopadhyay S, Dutta A, Saha A 2014 Gen. Rel. Grav. 46 1661

    [40]

    Dutta A, Gangopadhyay S 2014 Gen. Rel. Grav. 46 1747

    [41]

    Gangopadhyay S, Dutta A, Faizal M 2015 Euro. Phys. Lett. 112 20006

    [42]

    Dutta A, Gangopadhyay S 2016 Int. J. Theo. Phys. 55 2746

    [43]

    Ma H, Li J 2017 Chin. Phys. B 26 60401

    [44]

    Chen N S, Zhang J Y 2015 Chin. Phys. B 24 020401

    [45]

    Ibungochouba S T 2015 Chin. Phys. B 24 70401

    [46]

    Ye B B, Chen J H, Wang Y J 2017 Chin. Phys. B 26 90202

    [47]

    Amelino-Camelia G 2002 Int. J. Mod. Phys. D 11 35

    [48]

    Amelino-Camelia G 2001 Phys. Lett. B 510 255

    [49]

    Kowalski-Glikman J 2001 Phys. Lett. A 286 391

    [50]

    Magueijo J, Smolin L 2002 Phys. Rev. Lett. 88 190403

    [51]

    Magueijo J, Smolin L 2003 Phys. Rev. D 67 044017

    [52]

    Kimberly D, Magueijo J, Medeiros J 2004 Phys. Rev. D 70 084007

    [53]

    Magueijo J, Smolin L 2004 Class. Quant. Grav. 21 1725

    [54]

    Heuson C 2006 arXiv:gr-qc/0606124

    [55]

    Amelino-Camalia G, Ellis N E, Mavromatos D V 1997 Int. J. Mod. Phys. A 12 607

    [56]

    Amelino-Camalia G 2013 Living. Rev. Rel. 16 5

    [57]

    Altamirano N, Kubiznak D, Mann R B, Sherkatghanad Z 2014 Galaxies 2 89

    [58]

    Ling Y, Li X, Hu B 2007 Mod. Phys. Lett. A 22 2749

    [59]

    Ling Y, Hu B, Li X 2006 Phys. Rev. D 73 087702

    [60]

    Liu C Z, Zhu J Y 2008 Gen. Relat. Gravit. 40 1899

    [61]

    Zhang J Y, Zhao Z 2005 Mod. Phys. Lett. A 20 1673

    [62]

    Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003

    [63]

    Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752

    [64]

    Adler R J, Chen P, Santiago D I 2001 Gen. Rel. Grav. 33 2101

    [65]

    Amelino-Camelia G, Arzano M, Procaccini A 2004 Phys. Rev. D 70 107501

    [66]

    Ali A F, Mohammed M F, Khalil M 2015 Nucl. Phys. B 894 341

    [67]

    Ali A F 2014 Phys. Rev. D 89 104040

    [68]

    Kaul R K, Majumder P 2000 Phys. Rev. Lett. 84 5255

    [69]

    Don N 2005 Page, New. J. Phys. 7 203

    [70]

    Jing J L, Yan M L 1999 Phys.Rev. D 60 084015

    [71]

    Carlip S 2000 Class. Quant. Grav. 17 4175

    [72]

    Jing J L, Yan M L 2000 Phys. Rev. D 63 024003

  • [1] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [2] Shao Jian-Zhou, Wang Yong-Jiu. Acceleration effect in the gravitational field of black hole involving a global monopole. Acta Physica Sinica, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [3] Liu Qi-Neng. The defect mode and the quantum effect of light wave in cylindrical anisotropic photonic crystal. Acta Physica Sinica, 2011, 60(1): 014217. doi: 10.7498/aps.60.014217
    [4] Liu Cheng-Zhou, Yu Guo-Xiang, Xie Zhi-Kun. The spacetime singularity resolution of Schwarichild-de Sitter black hole in loop quantum gravity. Acta Physica Sinica, 2010, 59(3): 1487-1493. doi: 10.7498/aps.59.1487
    [5] Yuan Ning-Yi, Chen Xiao-Shuang, Ding Jian-Ning, He Ze-Jun, Li Feng, Lu Wei. Quantum effect and up-conversion luminescence of ZnO-SiO2 composite films synthesized by sol-gel technique. Acta Physica Sinica, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [6] Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica, 2008, 57(11): 6709-6713. doi: 10.7498/aps.57.6709
    [7] Liu Kui, Ding Hong-Lin, Zhang Xian-Gao, Yu Lin-Wei, Huang Xin-Fan, Chen Kun-Ji. Simulation of a triple-gate single electron FET memory with a quantum dot floating gate and a quantum wire channel. Acta Physica Sinica, 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [8] Hu Chu-Le, Xie Jia-Fang. Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica, 2007, 56(9): 5045-5048. doi: 10.7498/aps.56.5045
    [9] Xia Li-Li, Li Yuan-Cheng, Wang Jing, Hou Qi-Bao. Noether form invariance of nonholonomic controllable mechanical systems of non-Chetaev’s type. Acta Physica Sinica, 2006, 55(10): 4995-4998. doi: 10.7498/aps.55.4995
    [10] Li Yan-Ping, Xu Jing-Ping, Chen Wei-Bing, Xu Sheng-Guo, Ji Feng. 2-D threshold voltage model for short-channel MOSFET with quantum-mechanical effects. Acta Physica Sinica, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [11] Wang Yue-Yue, Yang Qin, Dai Chao-Qing, Zhang Jie-Fang. Solitary wave solution of Zakharov equation with quantum effect. Acta Physica Sinica, 2006, 55(3): 1029-1034. doi: 10.7498/aps.55.1029
    [12] Ge Wei-Kuan, Zhang Yi. Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica, 2005, 54(11): 4985-4988. doi: 10.7498/aps.54.4985
    [13] Lou Zhi-Mei. Form invariance for Hamiltonian Ermakov systems. Acta Physica Sinica, 2005, 54(5): 1969-1971. doi: 10.7498/aps.54.1969
    [14] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E. An analytical model of MOSFET threshold voltage with considiring the quantum effects. Acta Physica Sinica, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
    [15] Sun Ming-Chao. Quantum entropy of the Vaidya-Bonner-de Sitter black hole arising from gravitati onal fields. Acta Physica Sinica, 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [16] ZHANG LEI, ZHONG WEI-LIE. FERROELECTRIC BEHAVIORS OF BaTiO3 IN TRANSVERSE-FIELD ISING MODEL. Acta Physica Sinica, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
    [17] ZENG SHAO-QUN, XU HAI-FENG, LI JIAO-YANG, LIU XIAO-DE. ON THE LINEAR SHIFT INVARIANCE OF THE THERMAL WAVE IMAGING. Acta Physica Sinica, 1997, 46(7): 1338-1343. doi: 10.7498/aps.46.1338
    [18] JIA CHUN-SHENG, JIANG XIAO-WEI, WANG XIAO-GUO, YANG QIU-BO. CALCULATION OF THE ENERGY EIGENVALUE OF A-QUANTUM SYSTEM IN THE FRAMEWORK OF-SUPERSYMMETRY AND SHAPE INVARIANCE. Acta Physica Sinica, 1997, 46(1): 12-19. doi: 10.7498/aps.46.12
    [19] ZHANG HAI-YAN, XU BO-WEI. INVESTIGATION OF ONE-DIMENSIONAL NNN INTERACTION QUANTUN CHAIN BY CONFORMAL INVA-RIANCE AND THE LANCZOS METHOD. Acta Physica Sinica, 1994, 43(6): 864-871. doi: 10.7498/aps.43.864
    [20] GUAN XI-WEN, XIONG ZHUANG, ZHOU HUAN-QIANG. HIDDEN LOCAL GAUGE INVARIANCE IN FATEEV-ZAMOLO-DCHIKOV QUANTUM SPIN CHAIN. Acta Physica Sinica, 1993, 42(2): 331-339. doi: 10.7498/aps.42.331
Metrics
  • Abstract views:  6635
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2017
  • Accepted Date:  25 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回