Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An adaptive denoising algorithm for chaotic signals based on collaborative filtering

Wang Meng-Jiao Zhou Ze-Quan Li Zhi-Jun Zeng Yi-Cheng

Citation:

An adaptive denoising algorithm for chaotic signals based on collaborative filtering

Wang Meng-Jiao, Zhou Ze-Quan, Li Zhi-Jun, Zeng Yi-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Chaos is a seemingly random and irregular movement, happening in a deterministic system without random factors. Chaotic theory has promising applications in various areas (e.g., communication, image encryption, geophysics, weak signal detection). However, observed chaotic signals are often contaminated by noise. The presence of noise hinders the chaos theory from being applied to related fields. Therefore, it is important to develop a new method of suppressing the noise of the chaotic signals. Recently, the denoising algorithm for chaotic signals based on collaborative filtering was proposed. Its denoising performance is better than those of the existing denoising algorithms for chaotic signals. The denoising algorithm for chaotic signals based on collaborative filtering makes full use of the self-similar structural feature of chaotic signals. However, in the parameter optimization issue of the denoising algorithm, the selection of the filter parameters is affected by signal characteristic, sampling frequency and noise level. In order to improve the adaptivity of the denoising algorithm, a criterion for selecting the optimal filter parameters is proposed based on permutation entropy in this paper. The permutation entropy can effectively measure the complexity of time series. It has been widely applied to physical, medical, engineering, and economic sciences. According to the difference among the permutation entropies of chaotic signals at different noise levels, first, different filter parameters are used for denoising noisy chaotic signals. Then, the permutation entropy of the reconstructed chaotic signal corresponding to each of filter parameters is computed. Finally, the permutation entropies of the reconstructed chaotic signals are compared with each other, and the filter parameter corresponding to the minimum permutation entropy is selected as an optimal filter parameter. The selections of the filter parameters are analyzed in the cases of different signal characteristics, different sampling frequencies and different noise levels. Simulation results show that this criterion can automatically optimize the filter parameter efficiently in different conditions, which improves the adaptivity of the denoising algorithm for chaotic signals based on collaborative filtering.
      Corresponding author: Wang Meng-Jiao, wangmj@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471310, 11747087), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 17C1530), and the Natural Science Foundation of Xiangtan University, China (Grant No. 15XZX33).
    [1]

    L J H, Lu J A, Chen S H 2002 The Analysis and Applications of Chaotic Time Series (Wuhan:Wuhan University Press) pp1-8 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用(武汉:武汉大学出版社)第1–8页]

    [2]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [3]

    Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140

    [4]

    Li G Z, Zhang B 2017 IEEE Trans. Ind. Electron. 64 2255

    [5]

    Peng G Y, Min F H 2017 Nonlinear Dynam. 90 1607

    [6]

    Urbanowicz K, Hołyst J A 2003 Phys. Rev. E 67 046218

    [7]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing:Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理(北京:清华大学出版社)第32–35页]

    [8]

    Badii R, Broggi G, Derighetti B, Ravani M 1988 Phys. Rev. Lett. 60 979

    [9]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [10]

    Schreiber T, Richter M 1999 Int. J. Bifurcat. Chaos 9 2039

    [11]

    Donoho D L 1995 IEEE Trans. Inf. Theory 41 613

    [12]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Process. Lett. 14 62

    [13]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Process. 57 1351

    [14]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 050201]

    [15]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [16]

    Gao J B, Sultan H, Hu J, Tung W W 2010 IEEE Signal Process. Lett. 17 237

    [17]

    Chen Y, Liu X Y, Wu Z T, Fan Y, Ren Z L, Feng J C 2017 Acta Phys. Sin. 66 210501 (in Chinese) [陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超 2017 物理学报 66 210501]

    [18]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process. 16 2080

    [19]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Process. 9 88

    [20]

    Hou W, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 2663 (in Chinese) [侯威, 封国林, 董文杰, 李建平 2006 物理学报 55 2663]

    [21]

    Sun K H, He S B, Yin L Z, A D L·Duo L K 2012 Acta Phys. Sin. 61 130507 (in Chinese) [孙克辉, 贺少波, 尹林子, 阿地力·多力坤 2012 物理学报 61 130507]

    [22]

    Yu M Y, Sun K H, Liu W H, He S B 2018 Chaos Solitons Fractals 106 107

    [23]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [24]

    He S B, Sun K H, Wang H H 2016 Physical A 461 812

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [27]

    Chen G R, Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465

  • [1]

    L J H, Lu J A, Chen S H 2002 The Analysis and Applications of Chaotic Time Series (Wuhan:Wuhan University Press) pp1-8 (in Chinese) [吕金虎, 陆君安, 陈士华 2002 混沌时间序列分析及其应用(武汉:武汉大学出版社)第1–8页]

    [2]

    Han M, Xu M L 2013 Acta Phys. Sin. 62 120510 (in Chinese) [韩敏, 许美玲 2013 物理学报 62 120510]

    [3]

    Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140

    [4]

    Li G Z, Zhang B 2017 IEEE Trans. Ind. Electron. 64 2255

    [5]

    Peng G Y, Min F H 2017 Nonlinear Dynam. 90 1607

    [6]

    Urbanowicz K, Hołyst J A 2003 Phys. Rev. E 67 046218

    [7]

    Feng J C 2012 Chaotic Signals and Information Processing (Beijing:Tsinghua University Press) pp32-35 (in Chinese) [冯久超 2012 混沌信号与信息处理(北京:清华大学出版社)第32–35页]

    [8]

    Badii R, Broggi G, Derighetti B, Ravani M 1988 Phys. Rev. Lett. 60 979

    [9]

    Cawley R, Hsu G H 1992 Phys. Rev. A 46 3057

    [10]

    Schreiber T, Richter M 1999 Int. J. Bifurcat. Chaos 9 2039

    [11]

    Donoho D L 1995 IEEE Trans. Inf. Theory 41 613

    [12]

    Han M, Liu Y H, Xi J H, Guo W 2007 IEEE Signal Process. Lett. 14 62

    [13]

    Kopsinis Y, McLaughlin S 2009 IEEE Trans. Signal Process. 57 1351

    [14]

    Wang W B, Zhang X D, Wang X L 2013 Acta Phys. Sin. 62 050201 (in Chinese) [王文波, 张晓东, 汪祥莉 2013 物理学报 62 050201]

    [15]

    Tung W W, Gao J B, Hu J, Yang L 2011 Phys. Rev. E 83 046210

    [16]

    Gao J B, Sultan H, Hu J, Tung W W 2010 IEEE Signal Process. Lett. 17 237

    [17]

    Chen Y, Liu X Y, Wu Z T, Fan Y, Ren Z L, Feng J C 2017 Acta Phys. Sin. 66 210501 (in Chinese) [陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超 2017 物理学报 66 210501]

    [18]

    Dabov K, Foi A, Katkovnik V, Egiazarian K 2007 IEEE Trans. Image Process. 16 2080

    [19]

    Yadav S K, Sinha R, Bora P K 2015 IET Signal Process. 9 88

    [20]

    Hou W, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 2663 (in Chinese) [侯威, 封国林, 董文杰, 李建平 2006 物理学报 55 2663]

    [21]

    Sun K H, He S B, Yin L Z, A D L·Duo L K 2012 Acta Phys. Sin. 61 130507 (in Chinese) [孙克辉, 贺少波, 尹林子, 阿地力·多力坤 2012 物理学报 61 130507]

    [22]

    Yu M Y, Sun K H, Liu W H, He S B 2018 Chaos Solitons Fractals 106 107

    [23]

    Donoho D L, Johnstone I M 1994 Biometrika 81 425

    [24]

    He S B, Sun K H, Wang H H 2016 Physical A 461 812

    [25]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [26]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [27]

    Chen G R, Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465

  • [1] Liu Yuan, Yuan Ji-Yang, Zhou Xin-Yu, Gu Shuang-Quan, Zhou Pei, Mu Peng-Hua, Li Nian-Qiang. Fast physical random bit generation of wideband flat chaos signal based on filter feedback. Acta Physica Sinica, 2022, 71(22): 224203. doi: 10.7498/aps.71.20221173
    [2] Wang Shu-Chao, Su Xiu-Qin, Zhu Wen-Hua, Chen Song-Mao, Zhang Zhen-Yang, Xu Wei-Hao, Wang Ding-Jie. A time-correlated single photon counting signal denoising method based on elastic variational mode extraction. Acta Physica Sinica, 2021, 70(17): 174304. doi: 10.7498/aps.70.20210149
    [3] Liu Bai-Nian, Huang Qun-Bo, Zhang Wei-Min, Ren Kai-Jun, Cao Xiao-Qun, Zhao Jun. Invesitgation and experiments of wavelet thresholding in ensemble-based background error variance. Acta Physica Sinica, 2017, 66(2): 020505. doi: 10.7498/aps.66.020505
    [4] Chen Yue, Liu Xiong-Ying, Wu Zhong-Tang, Fan Yi, Ren Zi-Liang, Feng Jiu-Chao. Denoising of contaminated chaotic signals based on collaborative filtering. Acta Physica Sinica, 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [5] Hu Jin-Feng, Zhang Ya-Xuan, Li Hui-Yong, Yang Miao, Xia Wei, Li Jun. Harmonic signal detection method from strong chaotic background based on optimal filter. Acta Physica Sinica, 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [6] Li Xiong-Jie, Zhou Dong-Hua. A method of chaotic secure communication based on strong tracking filter. Acta Physica Sinica, 2015, 64(14): 140501. doi: 10.7498/aps.64.140501
    [7] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [8] Wang Meng-Jiao, Wu Zhong-Tang, Feng Jiu-Chao. A parameter optimization nonlinear adaptive denoising algorithm for chaotic signals. Acta Physica Sinica, 2015, 64(4): 040503. doi: 10.7498/aps.64.040503
    [9] Yang Wei, Zhang Yu, Xie Ying-Hai. Minimum-energy frame of discrete signal space and its de-noising application to rectangular pulse signal. Acta Physica Sinica, 2010, 59(11): 8255-8263. doi: 10.7498/aps.59.8255
    [10] Wang Guo-Guang, Wang Dan, He Li-Qiao. Projection filtering of signals in chaos. Acta Physica Sinica, 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [11] Du Jie, Cao Yi-Jia, Liu Zhi-Jian, Xu Li-Zhong, Jiang Quan-Yuan, Guo Chuang-Xin, Lu Jin-Gui. Local higher-order Volterra filter multi-step prediction model of chaotic time series. Acta Physica Sinica, 2009, 58(9): 5997-6005. doi: 10.7498/aps.58.5997
    [12] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [13] Liu Xin-Yuan, Xie Bai-Qing, Dai Yuan-Dong, Wang Fu-Ren, Li Zhuang-Zhi, Ma Ping, Xie Fei-Xiang, Yang Tao, Nie Rui-Juan. Adaptive noise cancellation for SQUID-based magnetocardiogram. Acta Physica Sinica, 2005, 54(4): 1937-1942. doi: 10.7498/aps.54.1937
    [14] Zhang Jia-Shu, Li Heng-Chao, Xiao Xian-Ci. A DCT domain quadratic predictor for real-time prediction of continuous chaotic signals. Acta Physica Sinica, 2004, 53(3): 710-716. doi: 10.7498/aps.53.710
    [15] Zhao Li , Chen Geng-Hua, Zhang Li-Hua, Huang Xu-Guang, Zhai Guang-Jie, Li Jun-Wen, Tang Yu-Lin, Feng Ji. Applications of improved complementary pair adaptive noise cancellation to MCG analysis*. Acta Physica Sinica, 2004, 53(12): 4420-4427. doi: 10.7498/aps.53.4420
    [16] Min Fu-Hong, Xu Wen-Bo, Xu Zhen-Yuan. . Acta Physica Sinica, 2002, 51(8): 1690-1695. doi: 10.7498/aps.51.1690
    [17] Wei Biao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie. . Acta Physica Sinica, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [18] ZHANG JIA-SHU, XIAO XIAN-CI. A REDUCED PARAMETER SECOND-ORDER VOLTERRA FILTER WITH APPLICATION TO NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES. Acta Physica Sinica, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
    [19] ZHANG JIA-SHU, XIAO XIAN-CI. NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES WITH A REDUCED PARAMETER NO NLINEAR ADAPTIVE FILTER. Acta Physica Sinica, 2000, 49(12): 2333-2339. doi: 10.7498/aps.49.2333
    [20] ZHANG JIA-SHU, XIAO XIAN-CI. PREDICTION OF CHAOTIC TIME SERIES BY USING ADAPTIVE HIGHER-ORDER NONLINEAR FOUR IER INFRARED FILTER. Acta Physica Sinica, 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
Metrics
  • Abstract views:  8471
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  17 November 2017
  • Accepted Date:  06 January 2018
  • Published Online:  20 March 2019

/

返回文章
返回