Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and analysis of medium wave infrared miniature static Fourier transform spectrometer

Wang Hong-Liang Lü Jin-Guang Liang Jing-Qiu Liang Zhong-Zhu Wang Wei-Biao

Citation:

Design and analysis of medium wave infrared miniature static Fourier transform spectrometer

Wang Hong-Liang, Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu, Wang Wei-Biao,
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This paper presents a spatial modulation Fourier transform micro-spectrometer based on micro-optical elements. The infrared microstructure diffractive optical elements, multi-step micro-mirrors and microlens array are introduced to realize the miniaturization of the instrument. In addition, the structure and basic principle of Fourier transform infrared micro-spectrometer are introduced. The design theory of micro-collimation system is analyzed based on the negative dispersion, the abberation correction and the arbitrary phase modulation characteristics of diffractive optical element. Combined with the characteristics of micro-static interference system, the micro-focusing coupled optical system is analyzed and designed. Based on the wave aberration theory and the Sellmeier dispersion formula, the influence of residual aberration on spectral recovery and the diffraction efficiency of diffraction surface in single-chip hybrid diffractive-refractive collimating lens are studied. The effects of diffraction of multi-stage micro-mirrors and the aperture diffraction of microlens array on spectral recovery are studied by using the scalar diffraction theory. Furthermore, the influence of axial assembly error of relay system on the whole system performance is studied. The results show that the diffraction efficiency of the diffraction surface, the diffraction of the multistage micro-mirror and the microlens array have no effect on the recovery spectrum when the working band of the system is 3.7-4.8 μm. Finally, in order to verify the accuracy of the system design results, an optical simulation software is used to simulate the infrared micro-Fourier transform spectrum. The accuracy of the system model is verified by the simulation that the reconstructed spectrum is in agreement with the ideal spectral curve and the actual spectral recovery error is 2.89%. The medium-wave infrared micro-static Fourier transform spectrometer has no movable parts and adopts micro-optics element to replace the traditional infrared lens. Therefore, it has the advantages of not only good stability, but also small size and light weight so that it is helpful in on-line monitoring applications and provides a new design idea about the micro-Fourier transform spectrometer.
      Corresponding author: Liang Jing-Qiu, liangjq@ciomp.ac.cn;liangzz@ciomp.ac.cn ; Liang Zhong-Zhu, liangjq@ciomp.ac.cn;liangzz@ciomp.ac.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant Nos. 61575193, 61627819, 61376122, 6173000222, 61727818), the Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20170204077GX, 20150204072GX, 20150520101JH, 20150101049JC), and the State Key Laboratory of Applied Optics Independent Fund and Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No. 2014193).
    [1]

    Cai Q S, Huang M, Han W, Cong L X, Lu X N 2017 Acta Phys. Sin. 66 160702 (in Chinese) [才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁 2017 物理学报 66 160702]

    [2]

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204 (in Chinese) [单昌功, 王薇刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204]

    [3]

    Yu H, Zhang R, Li K W, Xue R, Wang Z B 2017 Acta Phys. Sin. 66 054201 (in Chinese) [于慧, 张瑞, 李克武, 薛锐, 王志斌 2017 物理学报 66 054201]

    [4]

    Wu M, Cui L, Wang G, Ling X F, Zhao H M, Xu Z 2017 Spectrosc. Spec. Anal. 37 733 (in Chinese) [吴敏, 崔龙, 王港, 凌晓锋, 赵红梅, 徐智 2017 光谱学与光谱分析 37 733]

    [5]

    Podmore H, Scott A, Cheben P, Velasco A V, Schmid J H, Vachon M, Lee R 2017 Opt. Lett. 42 1440

    [6]

    Nie X, Ryckeboer E, Roelkens G, Baets R 2017 Opt. Express 25 A409

    [7]

    Akca B 2017 Opt. Express 25 1487

    [8]

    Watanabe A, Furukawa H 2018 Opt. Commun. 413 8

    [9]

    Rutkowski L, Johansson A C, Zhao G, Hausmaninger T, Khodabakhsh A, Axner O, Foltynowicz A 2017 Opt. Express 25 21711

    [10]

    Talghader J J, Gawarikar A S, Shea R P 2012 Light-Sci. Appl. 1 e24

    [11]

    Gross K C, Bradley K C, Perram G P 2010 Environ. Sci. Technol. 44 9390

    [12]

    Yin X H, Steinle T, Huang L L, Taubner T, Wutting M, Zentgraf T, Giessen H 2017 Light-Sci. Appl. 6 e17016

    [13]

    Hegyi A 2017 Opt. Express 25 17402

    [14]

    Shtanko A E, Kalenkov G S, Kalenkov S G 2017 J. Opt. Soc. Am. B 34 B49

    [15]

    Wang W, Samuelson S R, Chen J, Xie H 2015 IEEE Photon. Technol. 27 1418

    [16]

    Hook S J, Kahle A B 1996 Remote Sens. Environ. 56 172

    [17]

    Kong Y M, Liang J Q, Wang B, Liang Z Z, Xu D W, Zhang J 2009 Spectrosc. Spec. Anal. 29 1142 (in Chinese) [孔延梅, 梁静秋, 王波, 梁中翥, 徐大伟, 张军 2009 光谱学与光谱分析 29 1142]

    [18]

    Fu J G, Liang J Q, Liang Z Z 2012 Acta Opt. Sin. 32 266 (in Chinese) [付建国, 梁静秋, 梁中翥 2012 光学学报 32 266]

    [19]

    Gao J H, Liang Z Z, Liang J Q, Wang W B, L J G, Qin Y X 2017 Appl. Spectrosc. 71 1348

    [20]

    Davidson N, Friesem A A, Hasman E 1993 Appl. Opt. 32 4770

    [21]

    Wood A P 1992 Appl. Opt. 31 2253

    [22]

    Riedl M J 1996 Appl. Opt. 35 6833

    [23]

    Zhang S Q, Zhou L Y, Xue C X, Wang L 2017 Appl. Opt. 56 7442

    [24]

    Pan Y Q, Zhu C, Hang L X, Song J J 2004 Laser Infrar. 34 372 (in Chinese) [潘永强, 朱昌, 杭凌侠, 宋俊杰 2004 激光与红外 34 372]

    [25]

    Yang G G 2008 Micro-optics and System (Zhejiang:Zhejiang University Press) pp15-20 (in Chinese) [杨国光 2008 微光学与系统(浙江:浙江大学出版社)第15–20页]

    [26]

    L N G 2007 Fourier Optics (3rd Ed.) (Beijing:China Machine Press) pp89-112 (in Chinese) [吕乃光 2007 傅里叶光学(第三版) (北京:中国机械工业出版社)第89–112页]

  • [1]

    Cai Q S, Huang M, Han W, Cong L X, Lu X N 2017 Acta Phys. Sin. 66 160702 (in Chinese) [才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁 2017 物理学报 66 160702]

    [2]

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204 (in Chinese) [单昌功, 王薇刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204]

    [3]

    Yu H, Zhang R, Li K W, Xue R, Wang Z B 2017 Acta Phys. Sin. 66 054201 (in Chinese) [于慧, 张瑞, 李克武, 薛锐, 王志斌 2017 物理学报 66 054201]

    [4]

    Wu M, Cui L, Wang G, Ling X F, Zhao H M, Xu Z 2017 Spectrosc. Spec. Anal. 37 733 (in Chinese) [吴敏, 崔龙, 王港, 凌晓锋, 赵红梅, 徐智 2017 光谱学与光谱分析 37 733]

    [5]

    Podmore H, Scott A, Cheben P, Velasco A V, Schmid J H, Vachon M, Lee R 2017 Opt. Lett. 42 1440

    [6]

    Nie X, Ryckeboer E, Roelkens G, Baets R 2017 Opt. Express 25 A409

    [7]

    Akca B 2017 Opt. Express 25 1487

    [8]

    Watanabe A, Furukawa H 2018 Opt. Commun. 413 8

    [9]

    Rutkowski L, Johansson A C, Zhao G, Hausmaninger T, Khodabakhsh A, Axner O, Foltynowicz A 2017 Opt. Express 25 21711

    [10]

    Talghader J J, Gawarikar A S, Shea R P 2012 Light-Sci. Appl. 1 e24

    [11]

    Gross K C, Bradley K C, Perram G P 2010 Environ. Sci. Technol. 44 9390

    [12]

    Yin X H, Steinle T, Huang L L, Taubner T, Wutting M, Zentgraf T, Giessen H 2017 Light-Sci. Appl. 6 e17016

    [13]

    Hegyi A 2017 Opt. Express 25 17402

    [14]

    Shtanko A E, Kalenkov G S, Kalenkov S G 2017 J. Opt. Soc. Am. B 34 B49

    [15]

    Wang W, Samuelson S R, Chen J, Xie H 2015 IEEE Photon. Technol. 27 1418

    [16]

    Hook S J, Kahle A B 1996 Remote Sens. Environ. 56 172

    [17]

    Kong Y M, Liang J Q, Wang B, Liang Z Z, Xu D W, Zhang J 2009 Spectrosc. Spec. Anal. 29 1142 (in Chinese) [孔延梅, 梁静秋, 王波, 梁中翥, 徐大伟, 张军 2009 光谱学与光谱分析 29 1142]

    [18]

    Fu J G, Liang J Q, Liang Z Z 2012 Acta Opt. Sin. 32 266 (in Chinese) [付建国, 梁静秋, 梁中翥 2012 光学学报 32 266]

    [19]

    Gao J H, Liang Z Z, Liang J Q, Wang W B, L J G, Qin Y X 2017 Appl. Spectrosc. 71 1348

    [20]

    Davidson N, Friesem A A, Hasman E 1993 Appl. Opt. 32 4770

    [21]

    Wood A P 1992 Appl. Opt. 31 2253

    [22]

    Riedl M J 1996 Appl. Opt. 35 6833

    [23]

    Zhang S Q, Zhou L Y, Xue C X, Wang L 2017 Appl. Opt. 56 7442

    [24]

    Pan Y Q, Zhu C, Hang L X, Song J J 2004 Laser Infrar. 34 372 (in Chinese) [潘永强, 朱昌, 杭凌侠, 宋俊杰 2004 激光与红外 34 372]

    [25]

    Yang G G 2008 Micro-optics and System (Zhejiang:Zhejiang University Press) pp15-20 (in Chinese) [杨国光 2008 微光学与系统(浙江:浙江大学出版社)第15–20页]

    [26]

    L N G 2007 Fourier Optics (3rd Ed.) (Beijing:China Machine Press) pp89-112 (in Chinese) [吕乃光 2007 傅里叶光学(第三版) (北京:中国机械工业出版社)第89–112页]

  • [1] Gu Tong-Kai, Wang Lan-Lan, Guo Yang, Jiang Wei-Tao, Shi Yong-Sheng, Yang Shuo, Chen Jin-Ju, Liu Hong-Zhong. Realization of reconfigurable super-resolution imaging by liquid microlens arrays integrated on light disk. Acta Physica Sinica, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [2] Yan Xiong-Wei, Wang Zhen-Guo, Jiang Xin-Ying, Zheng Jian-Gang, Li Min, Jing Yu-Feng. Analysis of laser diode array pump coupling system based on microlens array. Acta Physica Sinica, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [3] Zhou Ning, Zhang Lan-Zhi, Li Dong-Wei, Chang Jun-Wei, Wang Bi-Yi, Tang Lei, Lin Jing-Quan, Hao Zuo-Qiang. Filamentation and supercontinuum emission with flattened femtosecond laser beam by use of microlens array in fused silica. Acta Physica Sinica, 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [4] Qiao Xiao-Xi, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang. Effect of micro-structure array on the liquid flow behaviors of near-surface layer. Acta Physica Sinica, 2017, 66(4): 044703. doi: 10.7498/aps.66.044703
    [5] Chen Qi-Jie, Zhou Gui-Yao, Shi Fu-Kun, Li Duan-Ming, Yuan Jin-Hui, Xia Chang-Ming, Ge Shu. Study of near-infrared dispersion wave generation for microstructured fiber. Acta Physica Sinica, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [6] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution. Acta Physica Sinica, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [7] Chen Cheng, Liang Jing-Qiu, Liang Zhong-Zhu, Lü Jin-Guang, Qin Yu-Xin, Tian Chao, Wang Wei-Biao. Influence on the recovered spectrum caused by thermal optics effect of the collimation lens used in static Fourier transform infrared spectrometer. Acta Physica Sinica, 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [8] Li Na, Jia Di, Zhao Hui-Jie, Su Yun, Li Tuo-Tuo. Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations. Acta Physica Sinica, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [9] Wang Hua-Ying, Zhang Zhi-Hui, Liao Wei, Song Xiu-Fa, Guo Zhong-Jia, Liu Fei-Fei. Focal depth of digital lensless Fourier transform micro-holographic system. Acta Physica Sinica, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [10] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [11] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Theoretical analysis on stationary Gaussian random noise in narrowband Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [12] Wang Bo, Liang Zhong-Zhu, Kong Yan-Mei, Liang Jing-Qiu, Fu Jian-Guo, Zheng Ying, Zhu Wan-Bin, Lü Jin-Guang, Wang Wei-Biao, Pei Shu, Zhang Jun. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [13] Liu Ying, Sun Qiang, Lu Zhen-Wu, Qu Feng, Wu Hong-Sheng, Li Chun. Hyper-spectral imaging system with harmonic diffraction element in medium and far infrared. Acta Physica Sinica, 2010, 59(10): 6980-6987. doi: 10.7498/aps.59.6980
    [14] Xiangli Bin, Yuan Yan, Lü Qun-Bo. Spectral transfer function of the Fourier transform spectral imager. Acta Physica Sinica, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] A newly micro-X-ray fluorescence spectrometer and applications for non-destructive analysis of archaeological objects. Acta Physica Sinica, 2007, 56(12): 6894-6898. doi: 10.7498/aps.56.6894
    [16] Investigation of periodically poled microstructure crystal by grating diffraction. Acta Physica Sinica, 2007, 56(12): 7153-7157. doi: 10.7498/aps.56.7153
    [17] Xiong Zhi_Ming, Zhang Qing_Chuan, Chen Da_Peng, Wu Xiao_Ping, Guo Zhe_Ying, Dong Feng_Liang, Miao Zheng_Yu, Li Chao_Bo. Optical-readout micro-cantilever array IR imaging system and performance analysis. Acta Physica Sinica, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [18] Miao Zheng-Yu, Zhang Qing-Chuan, Chen Da-Peng, Wu Xiao-Ping, Li Chao-Bo, Guo Zhe-Ying, Dong Feng-Liang, Xiong Zhi-Ming. Bi-material mircocantilever array room-temperature IR imaging. Acta Physica Sinica, 2006, 55(7): 3208-3214. doi: 10.7498/aps.55.3208
    [19] Liu Yu-Ling, Lu Zhen-Wu. Numerical analysis of the dispersion of subwavelength diffractive microlens. Acta Physica Sinica, 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [20] Cheng Guang-Hua, Wang Yi-Shan, Liu Qin, Zhao Wei, Chen Guo-Fu. Study of three-dimensional storage by parallel writing in PMMA with femtosecond laser pulses. Acta Physica Sinica, 2004, 53(2): 436-440. doi: 10.7498/aps.53.436
Metrics
  • Abstract views:  7978
  • PDF Downloads:  215
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2017
  • Accepted Date:  30 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回