[1] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica,
2015, 64(13): 134501.
doi: 10.7498/aps.64.134501
|
[2] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[3] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica,
2013, 62(15): 154501.
doi: 10.7498/aps.62.154501
|
[4] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun. Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica,
2012, 61(6): 064501.
doi: 10.7498/aps.61.064501
|
[5] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[6] |
Dong Wen-Shan, Fang Jian-Hui, Huang Bao-Xin. Hojman conserved quantities of generalized linear nonholonomic mechanical systems. Acta Physica Sinica,
2010, 59(2): 724-728.
doi: 10.7498/aps.59.724
|
[7] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(5): 2935-2938.
doi: 10.7498/aps.59.2935
|
[8] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(6): 3639-3642.
doi: 10.7498/aps.59.3639
|
[9] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li. The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica,
2009, 58(6): 3625-3631.
doi: 10.7498/aps.58.3625
|
[10] |
Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica,
2008, 57(11): 6714-6717.
doi: 10.7498/aps.57.6714
|
[11] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica,
2008, 57(11): 6704-6708.
doi: 10.7498/aps.57.6704
|
[12] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica,
2008, 57(11): 6709-6713.
doi: 10.7498/aps.57.6709
|
[13] |
Jia Li-Qun, Zhang Yao-Yu, Zheng Shi-Wang. Hojman conserved quantities for systems with non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica,
2007, 56(2): 649-654.
doi: 10.7498/aps.56.649
|
[14] |
Hu Chu-Le, Xie Jia-Fang. Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica,
2007, 56(9): 5045-5048.
doi: 10.7498/aps.56.5045
|
[15] |
Zhang Yi. Non-Noether conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints. Acta Physica Sinica,
2006, 55(2): 504-510.
doi: 10.7498/aps.55.504
|
[16] |
Zhang Yi. Lutzky conserved quantities and velocity-dependent symmetries for systems with unilateral holonomic constraints. Acta Physica Sinica,
2006, 55(5): 2109-2114.
doi: 10.7498/aps.55.2109
|
[17] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica,
2005, 54(3): 1009-1014.
doi: 10.7498/aps.54.1009
|
[18] |
Fang Jian-Hui, Zhang Peng-Yu. The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica,
2004, 53(12): 4041-4044.
doi: 10.7498/aps.53.4041
|
[19] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(5): 1270-1275.
doi: 10.7498/aps.53.1270
|
[20] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(8): 2413-2418.
doi: 10.7498/aps.53.2413
|