搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完整系统Appell方程的Lie-Mei对称性与守恒量

李元成 夏丽莉 王小明 刘晓巍

引用本文:
Citation:

完整系统Appell方程的Lie-Mei对称性与守恒量

李元成, 夏丽莉, 王小明, 刘晓巍

Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system

Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei
PDF
导出引用
  • 研究了完整系统Appell方程的Lie-Mei对称性与守恒量.在完整系统Appell方程的基础上,给出了Appell方程的Lie-Mei对称性的定义和判据,得到了Appell方程的Lie-Mei对称性导致的Hojman守恒量和Mei守恒量.举例说明结果的应用.
    The Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system are studied. On the basis of the Appell equation, we first obtain the Lie symmetry and the Mei symmetry for the equation and the conserved quantities deduced from them, then the definition and the criterion for Lie-Mei symmetry of Appell equation are presented. Lastly, the Mei conserved quantity and the Hojman conserved quantity are deduced from the Lie-Mei symmetry. An example is given to illustrate the application of the result.
    [1]

    [1]Appell P 1899 C. R. Acad. Sci. Paris 129 317

    [2]

    [2]Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) p214 (in Chinese) [梅凤翔 1985 非完整力学基础 (北京:北京工业学院出版社)第214页]

    [3]

    [3]Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) p131 (in Chinese) [梅凤翔、刘端、罗勇 1991 高等分析力学 (北京:北京理工大学出版社) 第131页]

    [4]

    [4]Xue W X 1987 Acta Mech. Sin. 19 156 (in Chinese) [薛问西 1987 力学学报 19 156]

    [5]

    [5]Yuan S J, Mei F X 1987 Acta Mech. Sin. 19 165 (in Chinese) [袁士杰、梅凤翔 1987 力学学报19 165]

    [6]

    [6]Luo S K 1996 Appl. Math. Mech. 17 683

    [7]

    [7]Luo S K 1998 Appl. Math. Mech. 19 43

    [8]

    [8]Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI 235

    [9]

    [9]Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press) pp1—52 (in Chinese )[李子平 1993 经典和量子约束系统及其对称性质 (北京:北京工业大学出版社) 第1—52页]

    [10]

    ]Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [11]

    ]Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔 2004 约束力学系统的对称性与守恒量 (北京:北京理工大学出版社)]

    [12]

    ]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) pp288—415 (in Chinese)[罗绍凯、张永发 2008 约束系统动力学研究进展 (北京:科学出版社) 第288—415]

    [13]

    ]Hojman S A 1992 J. Phys. A 25 L291

    [14]

    ]Mei F X 2000 J. Beijing Inst. Techn. 9 120

    [15]

    ]Mei F X, Shang M 2000 Acta Phys. Sin. 49 1901 (in Chinese) [梅凤翔、尚玫 2000 物理学报 49 1901]

    [16]

    ]Mei F X, Xu X J, Zhang Y F 2004 Acta Mech. Sin. 20 668

    [17]

    ]Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [18]

    ]Qiao Y F, Zhao S H, Li R J 2004 Chin. Phys. 13 292

    [19]

    ]Mei F X 2001 Chin. Phys. 10 177

    [20]

    ]Luo S K 2002 J. Changsha Univ. 16 1 (in Chinese) [罗绍凯 2002 长沙大学学报 16 1]

    [21]

    ]Li R J, Qiao Y F, Meng J 2002 Acta Phys. Sin. 51 1 (in Chinese) [李仁杰、乔永芬、孟军 2002 物理学报 51 1]

    [22]

    ]Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese) [罗绍凯 2002 物理学报 51 712]

    [23]

    ]Zhang Y Y, Jia L Q, Zheng S W 2007 J. Henan Normal Univ. 35 77 (in Chinese) [张耀宇、贾利群、郑世旺 2007 河南师范大学学报 35 77]

    [24]

    ]Jia L Q, Zhang Y Y, Zheng S W 2007 J. Yunnan Univ. 29 589 (in Chinese)[贾利群、张耀宇、郑世旺 2007 云南大学学报 29 589]

    [25]

    ]Jia L Q, Cui J C, Zhang Y Y, Luo S K 2009 Acta Phys. Sin. 58 16 (in Chinese) [贾利群、崔金超、张耀宇、罗绍凯 2009 物理学报 58 16]

    [26]

    ]Jia L Q, Zhang Y Y, Cui J C 2009 J. Yunnan Univ. 31 52 [贾利群、张耀宇、崔金超 2009 云南大学学报 31 52]

  • [1]

    [1]Appell P 1899 C. R. Acad. Sci. Paris 129 317

    [2]

    [2]Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) p214 (in Chinese) [梅凤翔 1985 非完整力学基础 (北京:北京工业学院出版社)第214页]

    [3]

    [3]Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) p131 (in Chinese) [梅凤翔、刘端、罗勇 1991 高等分析力学 (北京:北京理工大学出版社) 第131页]

    [4]

    [4]Xue W X 1987 Acta Mech. Sin. 19 156 (in Chinese) [薛问西 1987 力学学报 19 156]

    [5]

    [5]Yuan S J, Mei F X 1987 Acta Mech. Sin. 19 165 (in Chinese) [袁士杰、梅凤翔 1987 力学学报19 165]

    [6]

    [6]Luo S K 1996 Appl. Math. Mech. 17 683

    [7]

    [7]Luo S K 1998 Appl. Math. Mech. 19 43

    [8]

    [8]Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI 235

    [9]

    [9]Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press) pp1—52 (in Chinese )[李子平 1993 经典和量子约束系统及其对称性质 (北京:北京工业大学出版社) 第1—52页]

    [10]

    ]Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [11]

    ]Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔 2004 约束力学系统的对称性与守恒量 (北京:北京理工大学出版社)]

    [12]

    ]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) pp288—415 (in Chinese)[罗绍凯、张永发 2008 约束系统动力学研究进展 (北京:科学出版社) 第288—415]

    [13]

    ]Hojman S A 1992 J. Phys. A 25 L291

    [14]

    ]Mei F X 2000 J. Beijing Inst. Techn. 9 120

    [15]

    ]Mei F X, Shang M 2000 Acta Phys. Sin. 49 1901 (in Chinese) [梅凤翔、尚玫 2000 物理学报 49 1901]

    [16]

    ]Mei F X, Xu X J, Zhang Y F 2004 Acta Mech. Sin. 20 668

    [17]

    ]Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [18]

    ]Qiao Y F, Zhao S H, Li R J 2004 Chin. Phys. 13 292

    [19]

    ]Mei F X 2001 Chin. Phys. 10 177

    [20]

    ]Luo S K 2002 J. Changsha Univ. 16 1 (in Chinese) [罗绍凯 2002 长沙大学学报 16 1]

    [21]

    ]Li R J, Qiao Y F, Meng J 2002 Acta Phys. Sin. 51 1 (in Chinese) [李仁杰、乔永芬、孟军 2002 物理学报 51 1]

    [22]

    ]Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese) [罗绍凯 2002 物理学报 51 712]

    [23]

    ]Zhang Y Y, Jia L Q, Zheng S W 2007 J. Henan Normal Univ. 35 77 (in Chinese) [张耀宇、贾利群、郑世旺 2007 河南师范大学学报 35 77]

    [24]

    ]Jia L Q, Zhang Y Y, Zheng S W 2007 J. Yunnan Univ. 29 589 (in Chinese)[贾利群、张耀宇、郑世旺 2007 云南大学学报 29 589]

    [25]

    ]Jia L Q, Cui J C, Zhang Y Y, Luo S K 2009 Acta Phys. Sin. 58 16 (in Chinese) [贾利群、崔金超、张耀宇、罗绍凯 2009 物理学报 58 16]

    [26]

    ]Jia L Q, Zhang Y Y, Cui J C 2009 J. Yunnan Univ. 31 52 [贾利群、张耀宇、崔金超 2009 云南大学学报 31 52]

  • [1] 张芳, 张耀宇, 薛喜昌, 贾利群. 相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2015, 64(13): 134501. doi: 10.7498/aps.64.134501
    [2] 张芳, 李伟, 张耀宇, 薛喜昌, 贾利群. 变质量Chetaev型非完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2014, 63(16): 164501. doi: 10.7498/aps.63.164501
    [3] 孙现亭, 张耀宇, 张芳, 贾利群. 完整系统Appell方程Lie对称性的共形不变性与Hojman守恒量. 物理学报, 2014, 63(14): 140201. doi: 10.7498/aps.63.140201
    [4] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [5] 徐超, 李元成. 奇异 Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量. 物理学报, 2013, 62(12): 120201. doi: 10.7498/aps.62.120201
    [6] 郑世旺, 王建波, 陈向炜, 李彦敏, 解加芳. 变质量非完整系统Tznoff方程的Lie 对称性与其导出的守恒量. 物理学报, 2012, 61(11): 111101. doi: 10.7498/aps.61.111101
    [7] 孙现亭, 韩月林, 王肖肖, 张美玲, 贾利群. 完整系统Appell方程Mei对称性的一种新的守恒量. 物理学报, 2012, 61(20): 200204. doi: 10.7498/aps.61.200204
    [8] 贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量. 物理学报, 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [9] 杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群. 变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量. 物理学报, 2011, 60(11): 111101. doi: 10.7498/aps.60.111101
    [10] 郑世旺, 解加芳, 陈向炜, 杜雪莲. 完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量. 物理学报, 2010, 59(8): 5209-5212. doi: 10.7498/aps.59.5209
    [11] 贾利群, 解银丽, 张耀宇, 崔金超, 杨新芳. Appell方程Mei对称性导致的一种新型守恒量. 物理学报, 2010, 59(11): 7552-7555. doi: 10.7498/aps.59.7552
    [12] 李元成, 王小明, 夏丽莉. 完整系统Nielsen方程的统一对称性与守恒量. 物理学报, 2010, 59(5): 2935-2938. doi: 10.7498/aps.59.2935
    [13] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量. 物理学报, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [14] 葛伟宽. 一类完整系统的Mei对称性与守恒量. 物理学报, 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [15] 刘仰魁, 方建会. 相空间中变质量力学系统Lie-Mei对称性的两个守恒量. 物理学报, 2008, 57(11): 6699-6703. doi: 10.7498/aps.57.6699
    [16] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量. 物理学报, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [17] 方建会, 王 鹏, 丁 宁. 相空间中力学系统的Lie-Mei对称性. 物理学报, 2006, 55(8): 3821-3824. doi: 10.7498/aps.55.3821
    [18] 许学军, 梅凤翔. 准坐标下一般完整系统的统一对称性. 物理学报, 2005, 54(12): 5521-5524. doi: 10.7498/aps.54.5521
    [19] 乔永芬, 张耀良, 赵淑红. 完整非保守系统Raitzin正则运动方程的积分因子和守恒定理. 物理学报, 2002, 51(8): 1661-1665. doi: 10.7498/aps.51.1661
    [20] 梅凤翔. 包含伺服约束的非完整系统的Lie对称性与守恒量. 物理学报, 2000, 49(7): 1207-1210. doi: 10.7498/aps.49.1207
计量
  • 文章访问数:  5896
  • PDF下载量:  1029
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-27
  • 修回日期:  2009-09-23
  • 刊出日期:  2010-03-05

完整系统Appell方程的Lie-Mei对称性与守恒量

  • 1. (1)河南教育学院物理系,郑州 450046; (2)中国石油大学(华东)物理科学与技术学院,青岛 266555

摘要: 研究了完整系统Appell方程的Lie-Mei对称性与守恒量.在完整系统Appell方程的基础上,给出了Appell方程的Lie-Mei对称性的定义和判据,得到了Appell方程的Lie-Mei对称性导致的Hojman守恒量和Mei守恒量.举例说明结果的应用.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回