[1] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[2] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica,
2013, 62(15): 154501.
doi: 10.7498/aps.62.154501
|
[3] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun. Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica,
2012, 61(6): 064501.
doi: 10.7498/aps.61.064501
|
[4] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[5] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei. Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica,
2010, 59(1): 11-14.
doi: 10.7498/aps.59.11
|
[6] |
Dong Wen-Shan, Huang Bao-Xin. Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica,
2010, 59(1): 1-6.
doi: 10.7498/aps.59.1
|
[7] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica,
2009, 58(1): 16-21.
doi: 10.7498/aps.58.16
|
[8] |
Zhang Kai, Wang Ce, Zhou Li-Bin. Lie symmetry and conserved quantities of Nambu mechanical systems. Acta Physica Sinica,
2008, 57(11): 6718-6721.
doi: 10.7498/aps.57.6718
|
[9] |
Huang Xiao-Hong, Zhang Xiao-Bo, Shi Shen-Yang. The Mei symmetry of discrete difference sequence mechanical system with variable mass. Acta Physica Sinica,
2008, 57(10): 6056-6062.
doi: 10.7498/aps.57.6056
|
[10] |
Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun. Lie symmetries of discrete Lagrange systems. Acta Physica Sinica,
2007, 56(6): 3060-3063.
doi: 10.7498/aps.56.3060
|
[11] |
Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3813-3816.
doi: 10.7498/aps.55.3813
|
[12] |
Fang Jian-Hui, Ding Ning, Wang Peng. Noether-Lie symmetry of non-holonomic mechanical system. Acta Physica Sinica,
2006, 55(8): 3817-3820.
doi: 10.7498/aps.55.3817
|
[13] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica,
2005, 54(9): 3983-3986.
doi: 10.7498/aps.54.3983
|
[14] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[15] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica,
2003, 52(12): 2945-2948.
doi: 10.7498/aps.52.2945
|
[16] |
Mei Feng-Xiang. Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica,
2003, 52(5): 1048-1050.
doi: 10.7498/aps.52.1048
|
[17] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|
[18] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui. . Acta Physica Sinica,
2002, 51(10): 2186-2190.
doi: 10.7498/aps.51.2186
|
[19] |
MEI FENG-XIANG, SHANG MEI. LIE SYMMETRIES AND CONSERVED QUANTITIES OF FIRST ORDER LAGRANGE SYSTEMS. Acta Physica Sinica,
2000, 49(10): 1901-1903.
doi: 10.7498/aps.49.1901
|
[20] |
MEI FENG-XIANG. LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica,
2000, 49(7): 1207-1210.
doi: 10.7498/aps.49.1207
|