[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[3] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[4] |
Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang. Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica,
2010, 59(12): 8322-8325.
doi: 10.7498/aps.59.8322
|
[5] |
Xia Li-Li, Li Yuan-Cheng. Non-Noether conserved quantity for relativistic nonholonomic controllable mechanical system with variable mass. Acta Physica Sinica,
2008, 57(8): 4652-4656.
doi: 10.7498/aps.57.4652
|
[6] |
Zhang Yi. Perturbation of symmetries and Hojman adiabatic invariants of discrete mechanical systems in the phase space. Acta Physica Sinica,
2007, 56(4): 1855-1859.
doi: 10.7498/aps.56.1855
|
[7] |
Fang Jian-Hui, Wang Peng, Ding Ning. Lie-Mei symmetry of mechanical system in phase space. Acta Physica Sinica,
2006, 55(8): 3821-3824.
doi: 10.7498/aps.55.3821
|
[8] |
Ge Wei-Kuan. Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica,
2005, 54(6): 2478-2481.
doi: 10.7498/aps.54.2478
|
[9] |
Lou Zhi-Mei. Form invariance for Hamiltonian Ermakov systems. Acta Physica Sinica,
2005, 54(5): 1969-1971.
doi: 10.7498/aps.54.1969
|
[10] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[11] |
Zhang Yi. Form invariance of mechanical systems with unilateral holonomic constraints. Acta Physica Sinica,
2004, 53(2): 331-336.
doi: 10.7498/aps.53.331
|
[12] |
Jia Li-Qun. A theory of relativistic analytical statics of rotational systems. Acta Physica Sinica,
2003, 52(5): 1039-1043.
doi: 10.7498/aps.52.1039
|
[13] |
Fu Jing-Li, Chen Li-Qun, Xie Feng-Ping. Perturbation to the symmetries of relativistic Birkhoffian systems and the inver se problems. Acta Physica Sinica,
2003, 52(11): 2664-2670.
doi: 10.7498/aps.52.2664
|
[14] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[15] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing. . Acta Physica Sinica,
2002, 51(10): 2183-2185.
doi: 10.7498/aps.51.2183
|
[16] |
Ge Wei-Kuan. . Acta Physica Sinica,
2002, 51(5): 939-942.
doi: 10.7498/aps.51.939
|
[17] |
LUO SHAO-KAI, FU JING-LI, CHEN XIANG-WEI. BASIC THEORY OF RELATIVISTIC BIRKHOFFIAN DYNAMICS OF ROTATIONAL SYSTEM. Acta Physica Sinica,
2001, 50(3): 383-389.
doi: 10.7498/aps.50.383
|
[18] |
FANG JIAN-HUI. CONSERVATION LAWS OF RELATIVISTIC VARIABLE MASS SYSTEMS. Acta Physica Sinica,
2001, 50(6): 1001-1005.
doi: 10.7498/aps.50.1001
|
[19] |
FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica,
2001, 50(3): 390-393.
doi: 10.7498/aps.50.390
|
[20] |
FU JING-LI, CHEN LI-QUN, LUO SHAO-KAI, CHEN XIANG-WEI, WANG XIN-MIN. STUDY ON DYNAMICS OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica,
2001, 50(12): 2289-2295.
doi: 10.7498/aps.50.2289
|