Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system

Sun Xian-Ting Zhang Yao-Yu Zhang Fang Jia Li-Qun

Citation:

Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system

Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system are studied. Under the special infinitesimal transformations in which the time is not variable, the Lie symmetry and conformal invariance of differential equations of motion for a holonomic system are defined, and the determining equations of the conformal invariance of Lie symmetry and the Hojman conserved quantity for the system are given. Finally, an example is presented to illustrate the application of the results.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11142014).
    [1]

    Mei F X, Wu H B 2010 Chin. Phys. B 19 050301

    [2]

    Xie Y L, Yang X F, Jia L Q 2011 Commun. Theor. Phys. 55 111

    [3]

    Wang X X, Sun X T, Zhang M L, Xie Y L, Jia L Q 2012 Acta Phys. Sin. 61 064501 (in Chinese) [王肖肖, 孙现亭, 张美玲, 解银丽, 贾利群 2012 物理学报 61 064501]

    [4]

    Zhang Y 2008 Acta Phys. Sin. 57 5374 (in Chinese) [张毅 2008 物理学报 57 5374]

    [5]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [6]

    Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese) [罗绍凯 2007 物理学报 56 5580]

    [7]

    Zhang M L, Wang X X, Han Y L, Jia L Q 2012 J. Yunnan Univ. (Natural Sciences Edition) 34 664 (in Chinese) [张美玲, 王肖肖, 韩月林, 贾利群 2012 云南大学学报 (自然科学版) 34 664]

    [8]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 73 357

    [9]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese) [葛伟宽 2008 物理学报 57 6714]

    [10]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Acta Phys. Sin. 62 110201 (in Chinese) [韩月林, 王肖肖, 张美玲, 贾利群 2013 物理学报 62 110201]

    [11]

    Fang J H 2010 Chin. Phys. B 19 040301

    [12]

    Zheng S W, Xie J F, Chen X W, Du X L 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向炜, 杜雪莲 2010 物理学报 59 5209]

    [13]

    Xie Y L, Jia L Q 2010 Chin Phys. Lett. 27 120201

    [14]

    Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese) [罗绍凯 2002 物理学报 51 712]

    [15]

    Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]

    [16]

    Wu H B, Mei F X 2009 Chin. Phys. B 18 3145

    [17]

    Cai J L 2009 Acta. Phys. Pol. A 115 854

    [18]

    Cai J L 2010 Acta. Phys. Pol. A 117 445

    [19]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [20]

    Jiang W A, Li Z J, Luo S K 2011 Chin. Phys. B 20 030202

    [21]

    Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz Birkhoff and Nambu Systems (Moscow: UFN) p183 (in Russian)

    [22]

    Zhang Y, Xue Y 2009 Chin. Q. Mech. 30 216 (in Chinese) [张毅, 薛纭 2009 力学季刊 30 216]

    [23]

    Cai J L, Shi S S, Fang H J 2012 Meccanica 47 63

    [24]

    Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 物理学报 62 160201]

    [25]

    Chen X W, Zhao Y H, Li Y M 2009 Chin. Phys. B 18 3139

    [26]

    Cai J L, Shi S S 2012 Acta Phys. Sin. 61 030201 (in Chinese) [蔡建乐, 史生水 2012 物理学报 61 030201]

    [27]

    Appell P 1953 Traité de Mécanique Rationnelle Ⅱ (Paris: Gauthier-Villars) p335

    [28]

    Xue W X 1987 Acta Mech. Sin. 3 354

    [29]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [30]

    Cui J C, Zhang Y Y, Yang X F, Jia L Q 2010 Chin. Phys. B 19 030304

    [31]

    Li Y C, Xia L L, Wang X M, Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成, 夏丽莉, 王小明, 刘晓巍 2010 物理学报 59 3639]

    [32]

    Jia L Q, Sun X T, Zhang M L, Zhang Y Y, Han Y L 2014 Acta Phys. Sin. 63 010201 (in Chinese) [贾利群, 孙现亭, 张美玲, 张耀宇, 韩月林 2014 物理学报 63 010201]

    [33]

    Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 物理学报 60 060201]

    [34]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 71 401

    [35]

    Mei F X, Chen X W 2000 Chin. Phys. 9 721

    [36]

    Wang X X, Han Y L, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201

    [37]

    Cai J L 2008 Chin. Phys. Lett. 25 1523

    [38]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2014 J. Mech. 30 21

    [39]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 物理学报 58 3617]

  • [1]

    Mei F X, Wu H B 2010 Chin. Phys. B 19 050301

    [2]

    Xie Y L, Yang X F, Jia L Q 2011 Commun. Theor. Phys. 55 111

    [3]

    Wang X X, Sun X T, Zhang M L, Xie Y L, Jia L Q 2012 Acta Phys. Sin. 61 064501 (in Chinese) [王肖肖, 孙现亭, 张美玲, 解银丽, 贾利群 2012 物理学报 61 064501]

    [4]

    Zhang Y 2008 Acta Phys. Sin. 57 5374 (in Chinese) [张毅 2008 物理学报 57 5374]

    [5]

    Jia L Q, Wang X X, Zhang M L, Han Y L 2012 Nonlinear Dyn. 69 1807

    [6]

    Luo S K 2007 Acta Phys. Sin. 56 5580 (in Chinese) [罗绍凯 2007 物理学报 56 5580]

    [7]

    Zhang M L, Wang X X, Han Y L, Jia L Q 2012 J. Yunnan Univ. (Natural Sciences Edition) 34 664 (in Chinese) [张美玲, 王肖肖, 韩月林, 贾利群 2012 云南大学学报 (自然科学版) 34 664]

    [8]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 73 357

    [9]

    Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese) [葛伟宽 2008 物理学报 57 6714]

    [10]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Acta Phys. Sin. 62 110201 (in Chinese) [韩月林, 王肖肖, 张美玲, 贾利群 2013 物理学报 62 110201]

    [11]

    Fang J H 2010 Chin. Phys. B 19 040301

    [12]

    Zheng S W, Xie J F, Chen X W, Du X L 2010 Acta Phys. Sin. 59 5209 (in Chinese) [郑世旺, 解加芳, 陈向炜, 杜雪莲 2010 物理学报 59 5209]

    [13]

    Xie Y L, Jia L Q 2010 Chin Phys. Lett. 27 120201

    [14]

    Luo S K 2002 Acta Phys. Sin. 51 712 (in Chinese) [罗绍凯 2002 物理学报 51 712]

    [15]

    Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]

    [16]

    Wu H B, Mei F X 2009 Chin. Phys. B 18 3145

    [17]

    Cai J L 2009 Acta. Phys. Pol. A 115 854

    [18]

    Cai J L 2010 Acta. Phys. Pol. A 117 445

    [19]

    Jiang W A, Luo S K 2012 Nonlinear Dyn. 67 475

    [20]

    Jiang W A, Li Z J, Luo S K 2011 Chin. Phys. B 20 030202

    [21]

    Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M 1997 Analytical Dynamics of Helmholtz Birkhoff and Nambu Systems (Moscow: UFN) p183 (in Russian)

    [22]

    Zhang Y, Xue Y 2009 Chin. Q. Mech. 30 216 (in Chinese) [张毅, 薛纭 2009 力学季刊 30 216]

    [23]

    Cai J L, Shi S S, Fang H J 2012 Meccanica 47 63

    [24]

    Han Y L, Sun X T, Zhang Y Y, Jia L Q 2013 Acta Phys. Sin. 62 160201 (in Chinese) [韩月林, 孙现亭, 张耀宇, 贾利群 2013 物理学报 62 160201]

    [25]

    Chen X W, Zhao Y H, Li Y M 2009 Chin. Phys. B 18 3139

    [26]

    Cai J L, Shi S S 2012 Acta Phys. Sin. 61 030201 (in Chinese) [蔡建乐, 史生水 2012 物理学报 61 030201]

    [27]

    Appell P 1953 Traité de Mécanique Rationnelle Ⅱ (Paris: Gauthier-Villars) p335

    [28]

    Xue W X 1987 Acta Mech. Sin. 3 354

    [29]

    Cai J L 2012 Nonlinear Dyn. 69 487

    [30]

    Cui J C, Zhang Y Y, Yang X F, Jia L Q 2010 Chin. Phys. B 19 030304

    [31]

    Li Y C, Xia L L, Wang X M, Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成, 夏丽莉, 王小明, 刘晓巍 2010 物理学报 59 3639]

    [32]

    Jia L Q, Sun X T, Zhang M L, Zhang Y Y, Han Y L 2014 Acta Phys. Sin. 63 010201 (in Chinese) [贾利群, 孙现亭, 张美玲, 张耀宇, 韩月林 2014 物理学报 63 010201]

    [33]

    Jiang W A, Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese) [姜文安, 罗绍凯 2011 物理学报 60 060201]

    [34]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2013 Nonlinear Dyn. 71 401

    [35]

    Mei F X, Chen X W 2000 Chin. Phys. 9 721

    [36]

    Wang X X, Han Y L, Zhang M L, Jia L Q 2013 Chin. Phys. B 22 020201

    [37]

    Cai J L 2008 Chin. Phys. Lett. 25 1523

    [38]

    Han Y L, Wang X X, Zhang M L, Jia L Q 2014 J. Mech. 30 21

    [39]

    Fang J H 2009 Acta Phys. Sin. 58 3617 (in Chinese) [方建会 2009 物理学报 58 3617]

  • [1] Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica, 2015, 64(13): 134501. doi: 10.7498/aps.64.134501
    [2] Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica, 2014, 63(9): 090201. doi: 10.7498/aps.63.090201
    [3] Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica, 2014, 63(16): 164501. doi: 10.7498/aps.63.164501
    [4] Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica, 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [5] Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica, 2012, 61(20): 200204. doi: 10.7498/aps.61.200204
    [6] Cai Jian-Le, Shi Sheng-Shui. Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica, 2012, 61(3): 030201. doi: 10.7498/aps.61.030201
    [7] Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong. Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica, 2012, 61(20): 200202. doi: 10.7498/aps.61.200202
    [8] Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica, 2011, 60(11): 111101. doi: 10.7498/aps.60.111101
    [9] Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica, 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [10] Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica, 2011, 60(3): 030201. doi: 10.7498/aps.60.030201
    [11] Zhang Yao-Yu, Jia Li-Qun, Yang Xin-Fang, Xie Yin-Li, Cui Jin-Chao. A new type of conserved quantity induced by Mei symmetry of Appell equation. Acta Physica Sinica, 2010, 59(11): 7552-7555. doi: 10.7498/aps.59.7552
    [12] Gu Shu-Long, Zhang Hong-Bin. Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica, 2010, 59(2): 716-718. doi: 10.7498/aps.59.716
    [13] Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica, 2010, 59(6): 3639-3642. doi: 10.7498/aps.59.3639
    [14] Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica, 2009, 58(1): 22-27. doi: 10.7498/aps.58.22
    [15] Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [16] Cai Jian-Le, Mei Feng-Xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica, 2008, 57(9): 5369-5373. doi: 10.7498/aps.57.5369
    [17] Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica, 2008, 57(11): 6704-6708. doi: 10.7498/aps.57.6704
    [18] Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica, 2008, 57(11): 6709-6713. doi: 10.7498/aps.57.6709
    [19] Hu Chu-Le, Xie Jia-Fang. Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica, 2007, 56(9): 5045-5048. doi: 10.7498/aps.56.5045
    [20] Fang Jian-Hui, Zhang Peng-Yu. The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica, 2004, 53(12): 4041-4044. doi: 10.7498/aps.53.4041
Metrics
  • Abstract views:  6269
  • PDF Downloads:  547
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2014
  • Accepted Date:  21 March 2014
  • Published Online:  05 July 2014

/

返回文章
返回