[1] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica,
2015, 64(13): 134501.
doi: 10.7498/aps.64.134501
|
[2] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica,
2014, 63(16): 164501.
doi: 10.7498/aps.63.164501
|
[3] |
Liu Hong-Wei. Conformal symmetry and Mei conserved quantity for ageneralized Hamilton system. Acta Physica Sinica,
2014, 63(5): 050201.
doi: 10.7498/aps.63.050201
|
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica,
2014, 63(9): 090201.
doi: 10.7498/aps.63.090201
|
[5] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[6] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space. Acta Physica Sinica,
2014, 63(10): 104502.
doi: 10.7498/aps.63.104502
|
[7] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica,
2013, 62(16): 160201.
doi: 10.7498/aps.62.160201
|
[8] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity for a variable mass holonomic system in relative motion. Acta Physica Sinica,
2013, 62(23): 231101.
doi: 10.7498/aps.62.231101
|
[9] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong. Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica,
2012, 61(20): 200202.
doi: 10.7498/aps.61.200202
|
[10] |
Cai Jian-Le, Shi Sheng-Shui. Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica,
2012, 61(3): 030201.
doi: 10.7498/aps.61.030201
|
[11] |
Chen Rong, Xu Xue-Jun. Conformal invariance, Noether symmetry and Lie symmetry for systems with unilateral Chetaev non-holonomic constraints. Acta Physica Sinica,
2012, 61(14): 141101.
doi: 10.7498/aps.61.141101
|
[12] |
Chen Rong, Xu Xue-Jun. Conformal invariance, Noether symmetry and Lie symmetry for holonomic mechanical system with variable mass. Acta Physica Sinica,
2012, 61(2): 021102.
doi: 10.7498/aps.61.021102
|
[13] |
Chen Xiang-Wei, Zhao Yong-Hong, Liu Chang. Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass. Acta Physica Sinica,
2009, 58(8): 5150-5154.
doi: 10.7498/aps.58.5150
|
[14] |
Fang Jian-Hui. A kind of conserved quantity of Mei symmetry for Lagrange system. Acta Physica Sinica,
2009, 58(6): 3617-3619.
doi: 10.7498/aps.58.3617
|
[15] |
Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica,
2009, 58(1): 22-27.
doi: 10.7498/aps.58.22
|
[16] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica,
2008, 57(11): 6709-6713.
doi: 10.7498/aps.57.6709
|
[17] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica,
2008, 57(11): 6704-6708.
doi: 10.7498/aps.57.6704
|
[18] |
Ge Wei-Kuan. Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica,
2005, 54(6): 2478-2481.
doi: 10.7498/aps.54.2478
|
[19] |
Wu Hui-Bin, Mei Feng-Xiang. Symmetries of Lagrange system subjected to gyroscopic forces. Acta Physica Sinica,
2005, 54(6): 2474-2477.
doi: 10.7498/aps.54.2474
|
[20] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan. On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica,
2005, 54(2): 496-499.
doi: 10.7498/aps.54.496
|