[1] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[2] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica,
2013, 62(15): 154501.
doi: 10.7498/aps.62.154501
|
[3] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[4] |
Dong Wen-Shan, Huang Bao-Xin. Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica,
2010, 59(1): 1-6.
doi: 10.7498/aps.59.1
|
[5] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica,
2009, 58(1): 16-21.
doi: 10.7498/aps.58.16
|
[6] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li. The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica,
2009, 58(6): 3625-3631.
doi: 10.7498/aps.58.3625
|
[7] |
Zhang Kai, Wang Ce, Zhou Li-Bin. Lie symmetry and conserved quantities of Nambu mechanical systems. Acta Physica Sinica,
2008, 57(11): 6718-6721.
doi: 10.7498/aps.57.6718
|
[8] |
Zhang Yi. Perturbation of symmetries and Hojman adiabatic invariants of discrete mechanical systems in the phase space. Acta Physica Sinica,
2007, 56(4): 1855-1859.
doi: 10.7498/aps.56.1855
|
[9] |
Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3813-3816.
doi: 10.7498/aps.55.3813
|
[10] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica,
2006, 55(11): 5594-5597.
doi: 10.7498/aps.55.5594
|
[11] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica,
2005, 54(9): 3983-3986.
doi: 10.7498/aps.54.3983
|
[12] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na. Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica,
2005, 54(2): 490-495.
doi: 10.7498/aps.54.490
|
[13] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica,
2003, 52(12): 2945-2948.
doi: 10.7498/aps.52.2945
|
[14] |
Mei Feng-Xiang. Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica,
2003, 52(5): 1048-1050.
doi: 10.7498/aps.52.1048
|
[15] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|
[16] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui. . Acta Physica Sinica,
2002, 51(10): 2186-2190.
doi: 10.7498/aps.51.2186
|
[17] |
ZHANG YI, XUE YUN. LIE SYMMETRIES OF CONSTRAINED HAMILTONIAN SYSTEM WITH THE SECOND TYPE OF CONSTRAINTS . Acta Physica Sinica,
2001, 50(5): 816-819.
doi: 10.7498/aps.50.816
|
[18] |
Qiao Yong-Fen, Zhao Shu-Hong. . Acta Physica Sinica,
2001, 50(1): 1-7.
doi: 10.7498/aps.50.1
|
[19] |
MEI FENG-XIANG, SHANG MEI. LIE SYMMETRIES AND CONSERVED QUANTITIES OF FIRST ORDER LAGRANGE SYSTEMS. Acta Physica Sinica,
2000, 49(10): 1901-1903.
doi: 10.7498/aps.49.1901
|
[20] |
MEI FENG-XIANG. LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica,
2000, 49(7): 1207-1210.
doi: 10.7498/aps.49.1207
|