[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li. Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica,
2014, 63(17): 170202.
doi: 10.7498/aps.63.170202
|
[2] |
Zhang Yi, Jin Shi-Xin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica,
2013, 62(23): 234502.
doi: 10.7498/aps.62.234502
|
[3] |
Lou Zhi-Mei. The study of conserved quantities and symmetries for two-dimensional isotropic harmonic charged oscillator moving in homogeneous magnetic field. Acta Physica Sinica,
2013, 62(22): 220201.
doi: 10.7498/aps.62.220201
|
[4] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong. Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica,
2012, 61(20): 200202.
doi: 10.7498/aps.61.200202
|
[5] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li. A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica,
2011, 60(8): 084501.
doi: 10.7498/aps.60.084501
|
[6] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[7] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[8] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei. Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica,
2010, 59(1): 11-14.
doi: 10.7498/aps.59.11
|
[9] |
Gu Shu-Long, Zhang Hong-Bin. Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica,
2010, 59(2): 716-718.
doi: 10.7498/aps.59.716
|
[10] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[11] |
Lou Zhi-Mei. The study of symmetries and conserved quantities for one-dimensional damped-amplified harmonic oscillators. Acta Physica Sinica,
2008, 57(3): 1307-1310.
doi: 10.7498/aps.57.1307
|
[12] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[13] |
Lou Zhi_Mei. The study of symmetries and conserved quantities for one class of linearly coupled multidimensional freedom systems. Acta Physica Sinica,
2007, 56(5): 2475-2478.
doi: 10.7498/aps.56.2475
|
[14] |
Ge Wei-Kuan. Mei symmetries of a type of dynamical equations. Acta Physica Sinica,
2007, 56(1): 1-4.
doi: 10.7498/aps.56.1
|
[15] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[16] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[17] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica,
2005, 54(9): 3983-3986.
doi: 10.7498/aps.54.3983
|
[18] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica,
2003, 52(12): 2945-2948.
doi: 10.7498/aps.52.2945
|
[19] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[20] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|