[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li. Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica,
2014, 63(17): 170202.
doi: 10.7498/aps.63.170202
|
[2] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica,
2013, 62(15): 154501.
doi: 10.7498/aps.62.154501
|
[3] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2012, 61(20): 200204.
doi: 10.7498/aps.61.200204
|
[4] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[5] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[6] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[7] |
Liu Yang-Kui. A kind of conserved quantity of Mei symmetry for general holonomic mechanical systems. Acta Physica Sinica,
2010, 59(1): 7-10.
doi: 10.7498/aps.59.7
|
[8] |
Chen Xiang-Wei, Zhao Yong-Hong, Liu Chang. Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass. Acta Physica Sinica,
2009, 58(8): 5150-5154.
doi: 10.7498/aps.58.5150
|
[9] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li. The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica,
2009, 58(6): 3625-3631.
doi: 10.7498/aps.58.3625
|
[10] |
Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica,
2008, 57(11): 6714-6717.
doi: 10.7498/aps.57.6714
|
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[12] |
Liu Yang-Kui, Fang Jian-Hui. Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica,
2008, 57(11): 6699-6703.
doi: 10.7498/aps.57.6699
|
[13] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[14] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica,
2007, 56(10): 5575-5579.
doi: 10.7498/aps.56.5575
|
[15] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica,
2005, 54(2): 500-503.
doi: 10.7498/aps.54.500
|
[16] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[17] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[18] |
Fang Jian-Hui, Liao Yong-Pan, Zhang Jun. Non-Noether conserved quantity of a general form for mechanical systems with variable mass. Acta Physica Sinica,
2004, 53(12): 4037-4040.
doi: 10.7498/aps.53.4037
|
[19] |
Fang Jian-Hui, Zhang Peng-Yu. The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica,
2004, 53(12): 4041-4044.
doi: 10.7498/aps.53.4041
|
[20] |
Xu Zhi-Xin. . Acta Physica Sinica,
2002, 51(11): 2423-2425.
doi: 10.7498/aps.51.2423
|