搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Hamilton系统的Mei对称性导致的Mei守恒量

姜文安 罗绍凯

引用本文:
Citation:

广义Hamilton系统的Mei对称性导致的Mei守恒量

姜文安, 罗绍凯

Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system

Jiang Wen-An, Luo Shao-Kai
PDF
导出引用
  • 研究广义Hamilton系统的Mei对称性导致的守恒量. 首先,在群的一般无限小变换下给出广义Hamilton系统的Mei对称性的定义、判据和确定方程;其次,研究系统的Mei守恒量存在的条件和形式,得到Mei对称性直接导致的Mei守恒量; 而后,进一步给出带附加项的广义Hamilton系统Mei守恒量的存在定理; 最后,研究一类新的三维广义Hamilton系统,并研究三体问题中3个涡旋的平面运动.
    For a generalized Hamiltonian system, Mei conserved quantity derived by using Mei symmetry is studied. First, the definition,the criterion and the determining equations of Mei symmetry of generalized Hamiltonian system are given under infinitesimal transformations of group. Second, the conditions and the forms for existence of Mei conserved quantity are directly obtained by using the Mei symmetry of the system. Then, the theorem for existence of Mei conserved quantity of generalized Hamiltonian system with additional terms is given. Finally, a new three-dimensional generalized Hamiltonian system and the plane motion of the three vortices of three-body problem are studied by using the method presented in the paper.
    • 基金项目: 国家自然科学基金(批准号:10372053 )资助的课题.
    [1]

    Li J B, Zhao X H, Liu Z R 1994 Theory and Application of Generalized Hamilton Systems (Beijing: Science Press)(in Chinese) [李继彬、 赵晓华、 刘正荣 1994 广义哈密尔顿系统理论及其应用(北京: 科学出版社)]

    [2]

    Zhao X H 1994 Acta Math. Appl. Sin. 17 182(in Chinese)[赵晓华 1994 应用数学学报 17 182]

    [3]

    Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Spring-Verlag)

    [4]

    Marsden J E, Ratiu T S 1994 Introduction to Mechanics and Symmetry (New York: Spring-Verlag)

    [5]

    Mei F X 2003 Acta Phys. Sin. 52 1048(in Chinese)[梅凤翔 2003 物理学报 52 1048]

    [6]

    Jia L Q, Zheng S W 2006 Acta Phys. Sin. 55 3829(in Chinese)[贾利群、 郑世旺 2006 物理学报 55 3829]

    [7]

    Wu H B 2004 J. Beijing Inst. Technol. 24 20(in Chinese)[吴惠彬 2004 北京理工大学学报 24 20]

    [8]

    Zhang S Y, Deng Z C 2004 J. Compt. Mech. 21 571(in Chinese)[张素英、 邓子辰 2004 计算力学学报 21 571]

    [9]

    Huang Z L 2005 Ph.D. Dissertation (Hangzhou: Zhejiang University)(in Chinese)[黄志龙 2005 博士学位论文 (杭州: 浙江大学)]

    [10]

    Wang Y Z, Cheng D Z, Li C W 2002 Acta Autom. Sin. 28 745(in Chinese)[王玉振、 程代展、 李春文 2002 自动化学报 28 745]

    [11]

    Cheng D Z, Xi Z R, Lu Q, Mei S W 2000 Sci. China E 30 341(in Chinese)[程代展、 席在荣、 卢 强、 梅生伟 2000 中国科学E 30 341]

    [12]

    Liu C, Liu S X, Mei F X, Guo Y X 2008 Acta Phys. Sin. 57 6709(in Chinese)[刘 畅、 刘世兴、 梅凤翔、 郭永新 2008 物理学报 57 6709]

    [13]

    Noether A E 1918 Nachr. Akad. Wiss. Gottingen: Math. Phys. 2 235

    [14]

    Li Z P 1981 Acta Phys. Sin. 30 1659(in Chinese)[李子平 1981 物理学报 30 1659]

    [15]

    Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properies (Beijing: Beijing Polytechnic University Press)(in Chinese)[李子平 1993 经典和量子约束系统及其对称性 (北京: 北京工业大学出版社)]

    [16]

    Mei F X 1993 Sci. China A 36 1456

    [17]

    Liu D 1990 Sci. China A 11 1189 (in Chinese)[刘 端 1990 中国科学 A 11 1189]

    [18]

    Luo S K 1991 Chin. Sci. Bull. 36 1930

    [19]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press)(in Chinese)[赵跃宇、 梅凤翔 1999 力学系统的对称性与不变量(北京:科学出版社)]

    [20]

    Mei F X 2004 Symmetry and Conserved Quantity of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京:北京理工大学出版社)]

    [21]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese) [罗绍凯、 张永发 2008 约束系统动力学研究进展 (北京: 科学出版社)]

    [22]

    Lutzky M 1979 J. Phys. A 12 973

    [23]

    Lutzky M 1979 J. Math. Phys. A 19 105

    [24]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)]

    [25]

    Mei F X 1998 Chin. Sci. Bull. 43 1937

    [26]

    Zhang Y, Xue Y 2001 Acta Phys. Sin. 50 816 (in Chinese)[张 毅、 薛 纭 2001 物理学报 50 816]

    [27]

    Zhang H B, Chen L Q, Liu R W, Gu S L 2005 Acta Phys. Sin. 54 2489 (in Chinese) [张宏彬、 陈立群、 刘荣万、 顾书龙 2005 物理学报 54 2489]

    [28]

    Guo Y X, Jiang L Y, Yu Y 2001 Chin. Phys. 10 181

    [29]

    Luo S K, Jia L Q 2003 Commun. Theor. Phys. 40 265

    [30]

    Luo S K 2003 Chin. Phys. Lett. 20 597

    [31]

    Fan J H 2010 Chin. Phys. B 19 040301

    [32]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [33]

    Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese) [罗绍凯 2003 物理学报 52 2941]

    [34]

    Fan J H 2003 Commun. Theor. Phys. 40 269

    [35]

    Chen X W, Luo S K, Mei F X 2002 Appl. Math. Mech. 23 47(in Chinese) [陈向炜、 罗绍凯、 梅凤翔 2002 应用数学与力 学 23 47] 〖36] Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [36]

    Luo S K 2002 Chin. Phys. Lett. 19 449

    [37]

    Luo S K 2002 Commun. Theor. Phys. 38 257

    [38]

    Ge W K 2002 Acta Phys. Sin. 51 939 (in Chinese)[葛伟宽 2002 物理学报 51 939]

    [39]

    Ge W K, Zhang Y 2006 Acta Phys. Sin. 55 4985 (in Chinese) [葛伟宽、 张 毅 2006 物理学报 55 4985]

    [40]

    Fang J H, Liao Y P, Peng Y 2005 Acta Phys. Sin. 54 496 (in Chinese) [方建会、 廖永潘、 彭 勇 2005 物理学报 54 496]

    [41]

    Lou Z M 2005 Acta Phys. Sin. 54 1969 (in Chinese) [楼智美 2005 物理学报 54 1969]

    [42]

    Xia L L, Li Y C, Wang J, Hou Q B 2006 Commun. Theor. Phys. 46 415

    [43]

    Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]

    [44]

    Ding N, Fang J H 2008 Chin. Phys. B 17 1550

    [45]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [46]

    Cui J C, Zhang Y Y, Jia L Q 2010 Chin. Phys. B 19 030304

    [47]

    Qian M, Jiang Y P 1984 Acta Math. Sci. 3 441(in Chinese) [钱 敏、 蒋云平 1984 数学物理学报 3 441]

  • [1]

    Li J B, Zhao X H, Liu Z R 1994 Theory and Application of Generalized Hamilton Systems (Beijing: Science Press)(in Chinese) [李继彬、 赵晓华、 刘正荣 1994 广义哈密尔顿系统理论及其应用(北京: 科学出版社)]

    [2]

    Zhao X H 1994 Acta Math. Appl. Sin. 17 182(in Chinese)[赵晓华 1994 应用数学学报 17 182]

    [3]

    Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Spring-Verlag)

    [4]

    Marsden J E, Ratiu T S 1994 Introduction to Mechanics and Symmetry (New York: Spring-Verlag)

    [5]

    Mei F X 2003 Acta Phys. Sin. 52 1048(in Chinese)[梅凤翔 2003 物理学报 52 1048]

    [6]

    Jia L Q, Zheng S W 2006 Acta Phys. Sin. 55 3829(in Chinese)[贾利群、 郑世旺 2006 物理学报 55 3829]

    [7]

    Wu H B 2004 J. Beijing Inst. Technol. 24 20(in Chinese)[吴惠彬 2004 北京理工大学学报 24 20]

    [8]

    Zhang S Y, Deng Z C 2004 J. Compt. Mech. 21 571(in Chinese)[张素英、 邓子辰 2004 计算力学学报 21 571]

    [9]

    Huang Z L 2005 Ph.D. Dissertation (Hangzhou: Zhejiang University)(in Chinese)[黄志龙 2005 博士学位论文 (杭州: 浙江大学)]

    [10]

    Wang Y Z, Cheng D Z, Li C W 2002 Acta Autom. Sin. 28 745(in Chinese)[王玉振、 程代展、 李春文 2002 自动化学报 28 745]

    [11]

    Cheng D Z, Xi Z R, Lu Q, Mei S W 2000 Sci. China E 30 341(in Chinese)[程代展、 席在荣、 卢 强、 梅生伟 2000 中国科学E 30 341]

    [12]

    Liu C, Liu S X, Mei F X, Guo Y X 2008 Acta Phys. Sin. 57 6709(in Chinese)[刘 畅、 刘世兴、 梅凤翔、 郭永新 2008 物理学报 57 6709]

    [13]

    Noether A E 1918 Nachr. Akad. Wiss. Gottingen: Math. Phys. 2 235

    [14]

    Li Z P 1981 Acta Phys. Sin. 30 1659(in Chinese)[李子平 1981 物理学报 30 1659]

    [15]

    Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properies (Beijing: Beijing Polytechnic University Press)(in Chinese)[李子平 1993 经典和量子约束系统及其对称性 (北京: 北京工业大学出版社)]

    [16]

    Mei F X 1993 Sci. China A 36 1456

    [17]

    Liu D 1990 Sci. China A 11 1189 (in Chinese)[刘 端 1990 中国科学 A 11 1189]

    [18]

    Luo S K 1991 Chin. Sci. Bull. 36 1930

    [19]

    Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press)(in Chinese)[赵跃宇、 梅凤翔 1999 力学系统的对称性与不变量(北京:科学出版社)]

    [20]

    Mei F X 2004 Symmetry and Conserved Quantity of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 2004 约束力学系统的对称性与守恒量 (北京:北京理工大学出版社)]

    [21]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese) [罗绍凯、 张永发 2008 约束系统动力学研究进展 (北京: 科学出版社)]

    [22]

    Lutzky M 1979 J. Phys. A 12 973

    [23]

    Lutzky M 1979 J. Math. Phys. A 19 105

    [24]

    Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese) [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京: 科学出版社)]

    [25]

    Mei F X 1998 Chin. Sci. Bull. 43 1937

    [26]

    Zhang Y, Xue Y 2001 Acta Phys. Sin. 50 816 (in Chinese)[张 毅、 薛 纭 2001 物理学报 50 816]

    [27]

    Zhang H B, Chen L Q, Liu R W, Gu S L 2005 Acta Phys. Sin. 54 2489 (in Chinese) [张宏彬、 陈立群、 刘荣万、 顾书龙 2005 物理学报 54 2489]

    [28]

    Guo Y X, Jiang L Y, Yu Y 2001 Chin. Phys. 10 181

    [29]

    Luo S K, Jia L Q 2003 Commun. Theor. Phys. 40 265

    [30]

    Luo S K 2003 Chin. Phys. Lett. 20 597

    [31]

    Fan J H 2010 Chin. Phys. B 19 040301

    [32]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [33]

    Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese) [罗绍凯 2003 物理学报 52 2941]

    [34]

    Fan J H 2003 Commun. Theor. Phys. 40 269

    [35]

    Chen X W, Luo S K, Mei F X 2002 Appl. Math. Mech. 23 47(in Chinese) [陈向炜、 罗绍凯、 梅凤翔 2002 应用数学与力 学 23 47] 〖36] Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [36]

    Luo S K 2002 Chin. Phys. Lett. 19 449

    [37]

    Luo S K 2002 Commun. Theor. Phys. 38 257

    [38]

    Ge W K 2002 Acta Phys. Sin. 51 939 (in Chinese)[葛伟宽 2002 物理学报 51 939]

    [39]

    Ge W K, Zhang Y 2006 Acta Phys. Sin. 55 4985 (in Chinese) [葛伟宽、 张 毅 2006 物理学报 55 4985]

    [40]

    Fang J H, Liao Y P, Peng Y 2005 Acta Phys. Sin. 54 496 (in Chinese) [方建会、 廖永潘、 彭 勇 2005 物理学报 54 496]

    [41]

    Lou Z M 2005 Acta Phys. Sin. 54 1969 (in Chinese) [楼智美 2005 物理学报 54 1969]

    [42]

    Xia L L, Li Y C, Wang J, Hou Q B 2006 Commun. Theor. Phys. 46 415

    [43]

    Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese) [蔡建乐 2009 物理学报 58 22]

    [44]

    Ding N, Fang J H 2008 Chin. Phys. B 17 1550

    [45]

    Wang P, Fang J H, Wang X M 2009 Chin. Phys. B 18 1312

    [46]

    Cui J C, Zhang Y Y, Jia L Q 2010 Chin. Phys. B 19 030304

    [47]

    Qian M, Jiang Y P 1984 Acta Math. Sci. 3 441(in Chinese) [钱 敏、 蒋云平 1984 数学物理学报 3 441]

  • [1] 黄卫立. 一般完整系统Mei对称性的逆问题. 物理学报, 2015, 64(17): 170202. doi: 10.7498/aps.64.170202
    [2] 孙现亭, 张耀宇, 薛喜昌, 贾利群. 增加附加项后广义Hamilton系统的形式不变性与Mei守恒量. 物理学报, 2015, 64(6): 064502. doi: 10.7498/aps.64.064502
    [3] 韩月林, 王肖肖, 张美玲, 贾利群. 弱非完整系统Mei对称性导致的新型精确和近似守恒量. 物理学报, 2013, 62(11): 110201. doi: 10.7498/aps.62.110201
    [4] 韩月林, 孙现亭, 张耀宇, 贾利群. 完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2013, 62(16): 160201. doi: 10.7498/aps.62.160201
    [5] 孙现亭, 韩月林, 王肖肖, 张美玲, 贾利群. 完整系统Appell方程Mei对称性的一种新的守恒量. 物理学报, 2012, 61(20): 200204. doi: 10.7498/aps.61.200204
    [6] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量. 物理学报, 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [7] 杨新芳, 孙现亭, 王肖肖, 张美玲, 贾利群. 变质量Chetaev型非完整系统Appell方程的Mei对称性和Mei守恒量. 物理学报, 2011, 60(11): 111101. doi: 10.7498/aps.60.111101
    [8] 贾利群, 解银丽, 罗绍凯. 相对运动动力学系统Appell方程Mei对称性导致的Mei守恒量. 物理学报, 2011, 60(4): 040201. doi: 10.7498/aps.60.040201
    [9] 贾利群, 张耀宇, 杨新芳, 崔金超, 解银丽. Lagrange系统Mei对称性的Ⅲ型结构方程和Ⅲ型Mei守恒量. 物理学报, 2010, 59(5): 2939-2941. doi: 10.7498/aps.59.2939
    [10] 贾利群, 崔金超, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2009, 58(4): 2141-2146. doi: 10.7498/aps.58.2141
    [11] 葛伟宽. 一类完整系统的Mei对称性与守恒量. 物理学报, 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [12] 贾利群, 罗绍凯, 张耀宇. 非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [13] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量. 物理学报, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [14] 贾利群, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整约束系统的Mei守恒量. 物理学报, 2007, 56(11): 6188-6193. doi: 10.7498/aps.56.6188
    [15] 贾利群, 郑世旺, 张耀宇. 事件空间中非Chetaev型非完整系统的Mei对称性与Mei守恒量. 物理学报, 2007, 56(10): 5575-5579. doi: 10.7498/aps.56.5575
    [16] 贾利群, 郑世旺. 带有附加项的广义Hamilton系统的Mei对称性. 物理学报, 2006, 55(8): 3829-3832. doi: 10.7498/aps.55.3829
    [17] 张 毅. 广义经典力学系统的对称性与Mei守恒量. 物理学报, 2005, 54(7): 2980-2984. doi: 10.7498/aps.54.2980
    [18] 方建会, 彭 勇, 廖永潘. 关于Lagrange系统和Hamilton系统的Mei对称性. 物理学报, 2005, 54(2): 496-499. doi: 10.7498/aps.54.496
    [19] 罗绍凯. Hamilton系统的Mei对称性、Noether对称性和Lie对称性. 物理学报, 2003, 52(12): 2941-2944. doi: 10.7498/aps.52.2941
    [20] 梅凤翔. 广义Hamilton系统的Lie对称性与守恒量. 物理学报, 2003, 52(5): 1048-1050. doi: 10.7498/aps.52.1048
计量
  • 文章访问数:  6596
  • PDF下载量:  880
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-10
  • 修回日期:  2010-09-25
  • 刊出日期:  2011-03-05

广义Hamilton系统的Mei对称性导致的Mei守恒量

  • 1. 浙江理工大学数学力学与数学物理研究所,杭州 310018
    基金项目: 国家自然科学基金(批准号:10372053 )资助的课题.

摘要: 研究广义Hamilton系统的Mei对称性导致的守恒量. 首先,在群的一般无限小变换下给出广义Hamilton系统的Mei对称性的定义、判据和确定方程;其次,研究系统的Mei守恒量存在的条件和形式,得到Mei对称性直接导致的Mei守恒量; 而后,进一步给出带附加项的广义Hamilton系统Mei守恒量的存在定理; 最后,研究一类新的三维广义Hamilton系统,并研究三体问题中3个涡旋的平面运动.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回