[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of the new exact and approximate conserved quantity deduced from Mei symmetry for a weakly nonholonomic system. Acta Physica Sinica,
2013, 62(11): 110201.
doi: 10.7498/aps.62.110201
|
[3] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica,
2013, 62(16): 160201.
doi: 10.7498/aps.62.160201
|
[4] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica,
2012, 61(20): 200203.
doi: 10.7498/aps.61.200203
|
[5] |
Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun. Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica,
2012, 61(2): 021101.
doi: 10.7498/aps.61.021101
|
[6] |
Cai Jian-Le, Shi Sheng-Shui. Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica,
2012, 61(3): 030201.
doi: 10.7498/aps.61.030201
|
[7] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[8] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[9] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica,
2011, 60(11): 111101.
doi: 10.7498/aps.60.111101
|
[10] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[11] |
Jia Li-Qun, Cui Jin-Chao, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equations for nonholonomic systems of unilateral non-Chetaev’s type in the event space. Acta Physica Sinica,
2009, 58(4): 2141-2146.
doi: 10.7498/aps.58.2141
|
[12] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[13] |
Hu Chu-Le. Lie symmetries and Hojman conserved quantities of one kind of differential equations of motion of nonholonomic systems. Acta Physica Sinica,
2007, 56(7): 3675-3677.
doi: 10.7498/aps.56.3675
|
[14] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[15] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica,
2007, 56(11): 6188-6193.
doi: 10.7498/aps.56.6188
|
[16] |
Zhang Yi. Non-Noether conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints. Acta Physica Sinica,
2006, 55(2): 504-510.
doi: 10.7498/aps.55.504
|
[17] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica,
2005, 54(3): 1009-1014.
doi: 10.7498/aps.54.1009
|
[18] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica,
2005, 54(2): 500-503.
doi: 10.7498/aps.54.500
|
[19] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(5): 1270-1275.
doi: 10.7498/aps.53.1270
|
[20] |
MEI FENG-XIANG. LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS WITH SERVOCONSTR AINTS. Acta Physica Sinica,
2000, 49(7): 1207-1210.
doi: 10.7498/aps.49.1207
|