[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica,
2013, 62(16): 160201.
doi: 10.7498/aps.62.160201
|
[3] |
Xu Chao, Li Yuan-Cheng. Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints. Acta Physica Sinica,
2013, 62(17): 171101.
doi: 10.7498/aps.62.171101
|
[4] |
Xu Chao, Li Yuan-Cheng. Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica,
2013, 62(12): 120201.
doi: 10.7498/aps.62.120201
|
[5] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun. Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica,
2012, 61(6): 064501.
doi: 10.7498/aps.61.064501
|
[6] |
Wang Xiao-Xiao, Zhang Mei-Ling, Han Yue-Lin, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica,
2012, 61(20): 200203.
doi: 10.7498/aps.61.200203
|
[7] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Wang Xiao-Xiao, Xie Yin-Li. A type of new conserved quantity of Mei symmetry for Nielsen equations. Acta Physica Sinica,
2011, 60(8): 084501.
doi: 10.7498/aps.60.084501
|
[8] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[9] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[10] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[11] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica,
2011, 60(11): 111101.
doi: 10.7498/aps.60.111101
|
[12] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(5): 2935-2938.
doi: 10.7498/aps.59.2935
|
[13] |
Zhang Yi. Parametric equations and its first integrals for Birkhoffian systems in the event space. Acta Physica Sinica,
2008, 57(5): 2649-2653.
doi: 10.7498/aps.57.2649
|
[14] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[15] |
Jia Li-Qun, Zhang Yao-Yu, Zheng Shi-Wang. Hojman conserved quantities for systems with non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica,
2007, 56(2): 649-654.
doi: 10.7498/aps.56.649
|
[16] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica,
2007, 56(10): 5575-5579.
doi: 10.7498/aps.56.5575
|
[17] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints in the event space. Acta Physica Sinica,
2007, 56(11): 6188-6193.
doi: 10.7498/aps.56.6188
|
[18] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Existence theorem and its converse of conserved quantities for the nonholonomic nonconservative systems in the event space. Acta Physica Sinica,
2006, 55(11): 5585-5589.
doi: 10.7498/aps.55.5585
|
[19] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica,
2005, 54(3): 1009-1014.
doi: 10.7498/aps.54.1009
|
[20] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica,
2004, 53(12): 4021-4025.
doi: 10.7498/aps.53.4021
|