[1] |
Huang Wei-Li. Inverse problem of Mei symmetry for a general holonomic system. Acta Physica Sinica,
2015, 64(17): 170202.
doi: 10.7498/aps.64.170202
|
[2] |
Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of the new exact and approximate conserved quantity deduced from Mei symmetry for a weakly nonholonomic system. Acta Physica Sinica,
2013, 62(11): 110201.
doi: 10.7498/aps.62.110201
|
[3] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2012, 61(20): 200204.
doi: 10.7498/aps.61.200204
|
[4] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[5] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[6] |
Liu Xiao-Wei, Li Yuan-Cheng. Another kind of conserved quantity induced by Mei symmetry of mechanico-electrical system. Acta Physica Sinica,
2011, 60(11): 111102.
doi: 10.7498/aps.60.111102
|
[7] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[8] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica,
2010, 59(8): 5209-5212.
doi: 10.7498/aps.59.5209
|
[9] |
Fang Jian-Hui. A kind of conserved quantity of Mei symmetry for Lagrange system. Acta Physica Sinica,
2009, 58(6): 3617-3619.
doi: 10.7498/aps.58.3617
|
[10] |
Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica,
2009, 58(1): 22-27.
doi: 10.7498/aps.58.22
|
[11] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[12] |
Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica,
2008, 57(11): 6714-6717.
doi: 10.7498/aps.57.6714
|
[13] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[14] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica,
2005, 54(9): 3983-3986.
doi: 10.7498/aps.54.3983
|
[15] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan. On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica,
2005, 54(2): 496-499.
doi: 10.7498/aps.54.496
|
[16] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica,
2005, 54(2): 500-503.
doi: 10.7498/aps.54.500
|
[17] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[18] |
Zhang Yi, Fan Cun-Xin, Ge Wei-Kuan. A new type of conserved quantities for Birkhoffian systems*. Acta Physica Sinica,
2004, 53(11): 3644-3647.
doi: 10.7498/aps.53.3644
|
[19] |
Li Hong, Fang Jian-Hui. Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica,
2004, 53(9): 2807-2810.
doi: 10.7498/aps.53.2807
|
[20] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|