Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of thermal noise characteristics in 10 nm metal oxide semiconductor field effect transistor

Jia Xiao-Fei Wei Qun Zhang Wen-Peng He Liang Wu Zhen-Hua

Citation:

Analysis of thermal noise characteristics in 10 nm metal oxide semiconductor field effect transistor

Jia Xiao-Fei, Wei Qun, Zhang Wen-Peng, He Liang, Wu Zhen-Hua
PDF
HTML
Get Citation
  • Small size metal-oxide-semiconductor field effect transistor (MOSFET), owing to their high theoretical efficiency and low production cost, have received much attention and are at the frontier of transistors. At present, their development is bottlenecked by physical limits due to equal scaling down of devices, which requires further improvement in terms of materials choice and device fabrication. As the MOSFET devices scale down to nanometer scale, on the one hand, the resulting short channel effect affects severely the thermal noise property; on the other hand, it makes the ratio of thermal noise in the gate, source, drain and substrate regions become higher and higher. However, the traditional thermal noise model mainly considers thermal noise of large-size devices, and its model does not consider the channel saturation region. In view of this, it is necessary to establish a small size MOSFET thermal noise model and analyze its characteristics.At present, there are some researches on MOSFET thermal noise, but they mainly focus on the thermal noise in channel region of large size nanoscale MOSFET. In the present work, according to the device structure and inherent thermal noise characteristics, we establish a thermal noise model for MOSFETs of 10 nm feature size. The model includes contributions of substrate region, gate-source-drain region, and channel region. In the channel region is also included the thermal noise related to the device saturation regime. Using such a model, the dependence of channel thermal noise and total thermal noise on the device bias condition and device parameters are investigated, evidencing the existence of thermal noise in the device saturation regime, which are consistent with the experimental results in the literature. The thermal noise increases with the gate voltage and source-drain voltage rising as the device structure shrinks. In a temperature range of 100–400 K, the thermal noise is basically on the order of 1021, indicating that the temperature has a great influence on the thermal noise. The thermal noise model established in this work can be applied to analyzing the noise performances of small size MOSFET devices, and the conclusions drawn from the present study are beneficial to improving the efficiency, lifetime, and response speed of MOSFETs on a nanometer scale.
      Corresponding author: Jia Xiao-Fei, jiaxiaofei-ab@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965005, 11964026), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2023-JC-YB-021, 2020JM-621), and the Fundamental Research Funds for the Central Universities of China.
    [1]

    Navid R, Dutton R W 2002 Simul. Semicond. Processes Dev. 2 75Google Scholar

    [2]

    Panda S, Maji B, Mukhopadhyay A K 2012 Int. J. Emerg. Technol. Adv. Eng. 12 107Google Scholar

    [3]

    Liu W, Padovani A, Larcher L, Raghavan N 2014 IEEE Electron Dev. Lett. 35 157Google Scholar

    [4]

    Koyama M 2015 Ph. D. Dissertation (Tokyo: Tokyo Institute of Technology

    [5]

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38 [庄奕琪, 孙青 1993 半导体器件中的噪声及其低噪声化技术(北京: 国防工业出版社)第38页

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38

    [6]

    Dabhi C K, Dasgupta A, Pragya K, Harshit A, Chenming H, Yogesh S C 2018 IEEE Microw. Wirel. Co. 28 597Google Scholar

    [7]

    Myeong I, Kim J, Ko H 2020 IEEE T. Comput. Aid. D 39 4351Google Scholar

    [8]

    Kenji O, Shuhei A 2021 IEEE T. Electron Dev. 68 1478Google Scholar

    [9]

    Schmid M, Bhogaraju S K, Hanss A, Elger G 2021 IEEE T. Instrum. Meas. 70 6500409Google Scholar

    [10]

    Navid R, Jungemann C, Lee T, Thomas H, Robert W 2007 J. Appl. Phys. 101 124501Google Scholar

    [11]

    Mahajan V M, Patalay P R, Jindal R P 2012 IEEE T. Electron Dev. 59 197Google Scholar

    [12]

    张梦, 姚若河, 刘玉荣 2020 物理学报 69 057101Google Scholar

    Zhang M, Yao R K, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [13]

    Chen X , Elgabra H, Chen C H, Baugh J, Wei L 2021 IEEE ISCAS 5 22Google Scholar

    [14]

    王军, 王林, 王丹丹 2016 物理学报 23 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 23 237102Google Scholar

    [15]

    Pahim V C, Galup-Montoro C, Schneider M C 2022 Nanotech 3 876

    [16]

    Jeon J, Lee J, Kim J, Park C H, Shin H 2009 Symposium on VLSI Technology Kyoto, Japan, June 15–17, 2009 p48

    [17]

    Knoblinger G, Klein P, Tiebout M 2001 IEEE J. Solid St. Circ. 36 831Google Scholar

    [18]

    Ji Y, Nan L, Mouthaan K 2009 Asia Pacific Microwave Conference, Singapore, December 7–10, 2009 p1659

    [19]

    Ong S. N, Yeo K S, Chew K W, Chan L H K, Boon C C International Symposium on Integrated Circuits and Systems, Paris, France, February 2–4, 2010 p306

    [20]

    Rahman A, Lundstrom M 2002 IEEE T. Electron Dev. 49 481Google Scholar

    [21]

    Andersson S, Svensson C 2005 Electron Lett. 41 869Google Scholar

    [22]

    Jeon J, Lee D, Park B, Shin H 2007 Solid State Electron. 51 1034Google Scholar

    [23]

    Paim V C, Galup-Montoro C, Schneider M C 2006 NSTI Nanotech. 3 876

    [24]

    Roy A S, Enz C C 2005 IEEE T. Electron Dev. 52 611Google Scholar

    [25]

    Chen C H, Chen D, Lee R, Lei P, Wan D IEEE Custom Integrated Circuits Conference San Jose, CA, USA, November 11, 2013 p6658426

  • 图 1  MOSFET结构示意图

    Figure 1.  MOSFET structure diagram.

    图 2  MOSFET热噪声电路图

    Figure 2.  MOSFET thermal noise circuit diagram.

    图 3  沟道热噪声与器件结构和偏置参量的关系 (a)沟道热噪声与栅极电压关系图; (b)沟道热噪声与源漏电压关系图; (c)沟道热噪声与沟道长度关系图; (d)沟道热噪声与温度关系图

    Figure 3.  Relationship between channel thermal noise and device structure and bias parameters: (a) Relationship between channel thermal noise and gate voltage; (b) relationship between channel thermal noise and source-drain voltage; (c) relationship between channel thermal noise and channel length voltage; (d) relationship between channel thermal noise and temperature voltage.

    图 4  总热噪声与器件结构和偏置参量的关系 (a)热噪声与栅极电压关系图; (b)热噪声与源漏电压关系图; (c)热噪声与沟道长度关系图; (d)热噪声与温度关系图

    Figure 4.  Relationship between total thermal noise and device structure and bias parameters: (a) Relationship between thermal noise and gate voltage; (b) relationship between thermal noise and source-drain voltage; (c) relationship between thermal noise and channel length voltage; (d) relationship between thermal noise and temperature voltage.

    表 1  MOSFET沟道热噪声值

    Table 1.  Channel thermal noise in MOSFET.

    VGS/V (0—1.2 V) VDS/V (0—2 V) L/nm (10—100 nm) T/K (100—400 K)
    SI, ch1 SI, ch2 SI, ch1 SI, ch2 SI, ch1 SI, ch2 SI, ch1 SI, ch2
    2.00×10–23 2.50×10–21 1.49×10–22 3.02×10–21 3.94×10–22 1.22×10–21 6.48×10–22 2.62×10–21
    2.84×10–22 2.61×10–21 1.52×10–21 3.52×10–21 1.64×10–22 8.47×10–22 6.69×10–22 2.52×10–21
    5.48×10–22 2.72×10–21 1.90×10–21 3.51×10–21 1.23×10–22 6.48×10–22 6.90×10–22 2.42×10–21
    8.12×10–22 2.83×10–21 2.12×10–21 3.50×10–21 9.93×10–23 5.25×10–22 7.12×10–22 2.42×10–21
    1.08×10–21 2.94×10–21 2.26×10–21 3.50×10–21 8.35×10–23 4.42×10–22 7.64×10–22 2.41×10–21
    1.34×10–21 3.05×10–21 2.36×10–21 3.49×10–21 7.22×10–23 3.81×10–22 7.86×10–22 2.41×10–21
    1.60×10–21 3.16×10–21 2.45×10–21 3.48×10–21 6.36×10–23 3.35×10–22 7.78×10–22 2.40×10–21
    1.87×10–21 3.27×10–21 2.51×10–21 3.48×10–21 5.69×10–23 2.99×10–22 7.76×10–22 2.40×10–21
    2.13×10–21 3.38×10–21 2.56×10–21 3.47×10–21 5.14×10–23 2.70×10–22 7.74×10–22 2.39×10–21
    2.40×10–21 3.49×10–21 2.61×10–21 3.47×10–21 4.69×10–23 2.46×10–22 7.72×10–22 2.37×10–21
    DownLoad: CSV
  • [1]

    Navid R, Dutton R W 2002 Simul. Semicond. Processes Dev. 2 75Google Scholar

    [2]

    Panda S, Maji B, Mukhopadhyay A K 2012 Int. J. Emerg. Technol. Adv. Eng. 12 107Google Scholar

    [3]

    Liu W, Padovani A, Larcher L, Raghavan N 2014 IEEE Electron Dev. Lett. 35 157Google Scholar

    [4]

    Koyama M 2015 Ph. D. Dissertation (Tokyo: Tokyo Institute of Technology

    [5]

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38 [庄奕琪, 孙青 1993 半导体器件中的噪声及其低噪声化技术(北京: 国防工业出版社)第38页

    Zhang Y Q, Sun Q 1993 Noise in Semiconductor Devices and Its Low Noise Technology (Beijing: National Defense Industry Press) p38

    [6]

    Dabhi C K, Dasgupta A, Pragya K, Harshit A, Chenming H, Yogesh S C 2018 IEEE Microw. Wirel. Co. 28 597Google Scholar

    [7]

    Myeong I, Kim J, Ko H 2020 IEEE T. Comput. Aid. D 39 4351Google Scholar

    [8]

    Kenji O, Shuhei A 2021 IEEE T. Electron Dev. 68 1478Google Scholar

    [9]

    Schmid M, Bhogaraju S K, Hanss A, Elger G 2021 IEEE T. Instrum. Meas. 70 6500409Google Scholar

    [10]

    Navid R, Jungemann C, Lee T, Thomas H, Robert W 2007 J. Appl. Phys. 101 124501Google Scholar

    [11]

    Mahajan V M, Patalay P R, Jindal R P 2012 IEEE T. Electron Dev. 59 197Google Scholar

    [12]

    张梦, 姚若河, 刘玉荣 2020 物理学报 69 057101Google Scholar

    Zhang M, Yao R K, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [13]

    Chen X , Elgabra H, Chen C H, Baugh J, Wei L 2021 IEEE ISCAS 5 22Google Scholar

    [14]

    王军, 王林, 王丹丹 2016 物理学报 23 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 23 237102Google Scholar

    [15]

    Pahim V C, Galup-Montoro C, Schneider M C 2022 Nanotech 3 876

    [16]

    Jeon J, Lee J, Kim J, Park C H, Shin H 2009 Symposium on VLSI Technology Kyoto, Japan, June 15–17, 2009 p48

    [17]

    Knoblinger G, Klein P, Tiebout M 2001 IEEE J. Solid St. Circ. 36 831Google Scholar

    [18]

    Ji Y, Nan L, Mouthaan K 2009 Asia Pacific Microwave Conference, Singapore, December 7–10, 2009 p1659

    [19]

    Ong S. N, Yeo K S, Chew K W, Chan L H K, Boon C C International Symposium on Integrated Circuits and Systems, Paris, France, February 2–4, 2010 p306

    [20]

    Rahman A, Lundstrom M 2002 IEEE T. Electron Dev. 49 481Google Scholar

    [21]

    Andersson S, Svensson C 2005 Electron Lett. 41 869Google Scholar

    [22]

    Jeon J, Lee D, Park B, Shin H 2007 Solid State Electron. 51 1034Google Scholar

    [23]

    Paim V C, Galup-Montoro C, Schneider M C 2006 NSTI Nanotech. 3 876

    [24]

    Roy A S, Enz C C 2005 IEEE T. Electron Dev. 52 611Google Scholar

    [25]

    Chen C H, Chen D, Lee R, Lei P, Wan D IEEE Custom Integrated Circuits Conference San Jose, CA, USA, November 11, 2013 p6658426

  • [1] Wang Yin-Xia, Bai Xiao-Chuan, Zhang Yong, Li Guo-Qing. Influence of high-frequency localized surface plasmon polariton effect of Al nanoparticles on luminescence efficiency of deep-blue BCzVBi OLED. Acta Physica Sinica, 2024, 73(3): 037802. doi: 10.7498/aps.73.20230858
    [2] Xiong Fan, Chen Yong-Cong, Ao Ping. Qubit dynamics driven by dipole field in thermal noise environment. Acta Physica Sinica, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [4] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [5] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [6] Huang Jun-Chao, Wang Ling-Ke, Duan Yi-Fei, Huang Ya-Feng, Liu Liang, Li Tang. Experimental study on 1/f intrinsic thermal noise in optical fibers. Acta Physica Sinica, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [7] Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Models on threshold voltage/subthreshold swing and structural design of high-k gate dielectric GeOI MOSFET. Acta Physica Sinica, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [8] Xie Wen-Xian, Xu Peng-Fei, Cai Li, Li Dong-Ping. Non-Markovian diffusion of the stochastic system with a biexponentical dissipative memory kernel. Acta Physica Sinica, 2013, 62(8): 080503. doi: 10.7498/aps.62.080503
    [9] Xin Yan-Hui, Liu Hong-Xia, Fan Xiao-Jiao, Zhuo Qing-Qing. Threshold voltage analytical model of fully depleted strained Si single Halo silicon-on-insulator metal-oxide semiconductor field effect transistor. Acta Physica Sinica, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [10] Xin Yan-Hui, Liu Hong-Xia, Fan Xiao-Jiao, Zhuo Qing-Qing. Two-dimensional analytical model of dual material gate strained Si SOI MOSFET with asymmetric Halo. Acta Physica Sinica, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [11] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Jia Hu-Jun, Chen Bin, Ma Zhen-Yang. Effects of the improved hetero-material-gate approach on sub-micron silicon carbide metal-semiconductor field-effect transistor. Acta Physica Sinica, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [12] Liu Xing-Hui, Zhang Jun-Song, Wang Ji-Wei, Ao Qiang, Wang Zhen, Ma Ying, Li Xin, Wang Zhen-Shi, Wang Rui-Yu. Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory. Acta Physica Sinica, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [13] Jia Xiao-Fei, Du Lei, Tang Dong-He, Wang Ting-Lan, Chen Wen-Hao. Research on shot noise suppression in quasi-ballistic transport nano-mOSFET. Acta Physica Sinica, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [14] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [15] Tang Dong-He, Du Lei, Wang Ting-Lan, Chen Hua, Chen Wen-Hao. Qualitative analysis of excess noise in nanoscale MOSFET. Acta Physica Sinica, 2011, 60(10): 107201. doi: 10.7498/aps.60.107201
    [16] Li Jin, Liu Hong-Xia, Li Bin, Cao Lei, Yuan Bo. Threshold voltage analytical model for strained Si SOI MOSFET with high-k dielectric. Acta Physica Sinica, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [17] An Xing-Tao, Li Yu-Xian, Liu Jian-Jun. Noise in mesoscopic physics. Acta Physica Sinica, 2007, 56(7): 4105-4112. doi: 10.7498/aps.56.4105
    [18] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [19] Li Yan-Ping, Xu Jing-Ping, Chen Wei-Bing, Xu Sheng-Guo, Ji Feng. 2-D threshold voltage model for short-channel MOSFET with quantum-mechanical effects. Acta Physica Sinica, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] LUO SHI-YU, SHAO MING-ZHU. CHANNELING EFFECTS IN BENT CRYSTAL. Acta Physica Sinica, 1986, 35(8): 1002-1009. doi: 10.7498/aps.35.1002
Metrics
  • Abstract views:  913
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2023
  • Accepted Date:  12 September 2023
  • Available Online:  12 October 2023
  • Published Online:  20 November 2023

/

返回文章
返回