Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of h-BN/Ag/Ag2O heterostructure by high temperature annealing and its surface-enhanced Raman scattering performance

Zheng Lin-Qi Shi Shu-Hua Li Jin-Ze Wang Zi-Yu Li Shuang

Citation:

Optimization of h-BN/Ag/Ag2O heterostructure by high temperature annealing and its surface-enhanced Raman scattering performance

Zheng Lin-Qi, Shi Shu-Hua, Li Jin-Ze, Wang Zi-Yu, Li Shuang
PDF
HTML
Get Citation
  • As a commonly used food additive, synthetic dyes are widely used in foods such as beverages, sweets and dairy products, and in the food processing process. Excessive use of synthetic dyes may induce cell mutations, children’s hyperactivity, genetic diseases and even cancer, which greatly threatens human health. As a fast, cheap, stable, ultra-sensitive and accurate detection method, SERS detection can reflect rich information about molecular fingerprint through the vibration of the analyte, and accurately determine the trace quantity of synthetic dyes in the actual environment. The metal/semiconductor heterostructure formed by the combination of plasmon metal and semiconductor is advantageous for the enhancement of photoinduced charge transfer (PICT) efficiency, and has obvious advantages in the study of surface-enhanced Raman scattering. In this work, the prepared hybrid substrate is annealed to further improve the surface-enhanced Raman scattering activity. Initially, high-density and monodisperse silver/silver oxide (Ag/Ag2O) nanoparticles are loaded onto two-dimensional hexagonal boron nitride (h-BN) nanosheets. On this basis, by annealing the system at high temperature, an efficient charge transfer channel is constructed, which greatly improves the PICT efficiency and chemical enhancement (CM). It is confirmed experimentally that the SERS signal intensity of h-BN/Ag/Ag2O material annealed at 320 ℃ with crystal violet (CV) as probe molecule is significantly increased 18 times compared with that of unannealed material, enhancement factor (EF) reaches 16.3145 ×107. Finally, based on the excellent SERS property of h-BN/Ag/Ag2O annealed at 320 ℃, the SERS detection of food additive Patent Blue V (PBV) is conducted in this work. The results show that the lowest detection concentration can reach 10–12 M, and the trace detection of synthetic dye PBV is realized. It has excellent spatial uniformity and anti-interference capability, which is of great significance in implementing the actual scene detection of PBV. The h-BN/Ag/Ag2O annealed at 320 ℃, the composite which is constructed in this paper, has both physical enhancement and chemical enhancement, and possess significant advantages in ultra-low sensitive SERS detection of food additives.
      Corresponding author: Li Shuang, lishuang@sdjzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11905115).
    [1]

    Zhang Y, Hu L, Liu X, Liu B, Wu K 2015 Food Chem. 166 352Google Scholar

    [2]

    Nevado J J B, Flores J R, Llerena M J V, Fariñas N R 1999 Talanta 48 895Google Scholar

    [3]

    Akbarian Y, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Sens. Actuators, B 273 228Google Scholar

    [4]

    Bijad M, Karimi-Maleh H, Farsi M, Shahidi S A 2017 J. Food Meas. Charact. 12 634Google Scholar

    [5]

    Darabi R, Shabani-Nooshabadi M 2021 Food Chem. 339 127841Google Scholar

    [6]

    Ntrallou K, Gika H, Tsochatzis E 2020 Foods 9 58Google Scholar

    [7]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Talanta 176 208Google Scholar

    [8]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2019 Composites Part B 172 666Google Scholar

    [9]

    Zhang J, Wang X, Zhang S, Wang W, Hojo M, Chen Z 2014 J. Electrochem. Soc. 161 H453Google Scholar

    [10]

    Duman S, Erbas Z, Soylak M 2020 Microchem. J. 159 105468Google Scholar

    [11]

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) 2013 EFSA J. 11 2818

    [12]

    Perez-Urquiza M, Beltran J L 2000 J. Chromatogr. A 898 271Google Scholar

    [13]

    Ozdemir Y, Akkan A A 1999 Turk. J. Chem. 23 221

    [14]

    Unsal Y E, Soylak M, Tuzen M 2015 Environ. Monit. Assess. 187 203Google Scholar

    [15]

    Yoshioka N, Ichihashi K 2008 Talanta 74 1408Google Scholar

    [16]

    Liu E, Fan X, Yang Z, Han L, Li S, Huang Y, Liao K, Cai L 2022 Spectrochim. Acta, Part A 276 121229Google Scholar

    [17]

    Zhang Y, Yang Z, Zou Y, Farooq S, Li Y, Zhang H 2023 Food Chem. 412 135563Google Scholar

    [18]

    Wang C M, Roy P K, Juluri B K, Chattopadhyay S 2018 Sens. Actuators, B 261 218Google Scholar

    [19]

    Koberling F, Gryczynski Z K, Gregor I, Berer T, Klar T A, Jacak J, Buchegger B, Langer G 2019 Proc. SPIE 10884 18840UGoogle Scholar

    [20]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [21]

    Schlucker S 2014 Angew. Chem. Int. Ed. 53 4756Google Scholar

    [22]

    Kanipe K N, Chidester P P, Stucky G D, Moskovits M 2016 ACS Nano 10 7566Google Scholar

    [23]

    Cho W J, Kim Y, Kim J K 2012 ACS Nano 6 249Google Scholar

    [24]

    Xie S, Chen D, Gu C, Jiang T, Zeng S, Wang Y Y, Ni Z, Shen X, Zhou J 2021 ACS Appl. Mater. Interfaces 13 33345Google Scholar

    [25]

    Wang Y, Zhang M, Yu H, Zuo Y, Gao J, He G, Sun Z 2019 Appl. Catal. B 252 174Google Scholar

    [26]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [27]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [28]

    Jing X X, Li D Q, Zhang Y, Hou X Y, Jiang J, Fan X C, Wang M C, Feng S P, Yu Y F, Lu J P, Hu Z L, Ni Z H 2021 Chin. Phys. Lett. 38 074203Google Scholar

    [29]

    Jiao A, Cui Q, Li S, Tian Y, Ma H, Wang C, Zhang M, Chen M, Li G, Liu X 2022 Opt. Express 30 588Google Scholar

    [30]

    Yu D, Xu L, Zhang H, Li J, Wang W, Yang L, Jiang X, Zhao B 2023 Chin. Chem. Lett. 34 107771Google Scholar

    [31]

    Xue W, Han B, Ma H, Hou X, Wang J J, Li R, Zhang Y 2023 Chem. Eng. J. Adv. 13 100440Google Scholar

    [32]

    Ji S, Kou S, Wang M, Qiu H, Sun X, Dou J, Yang Z 2019 Appl. Surf. Sci. 489 1002Google Scholar

    [33]

    Xu L, Zhang H, Tian Y, Jiao A, Li S, Tan Y, Chen M, Chen F 2020 Talanta 209 120535Google Scholar

    [34]

    Zhang H, Li G, Li S, Xu L, Tian Y, Jiao A, Liu X, Chen F, Chen M 2018 Appl. Surf. Sci. 457 684Google Scholar

    [35]

    Peng Q, Ji W, De S 2012 Comput. Mater. Sci. 56 11Google Scholar

    [36]

    Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Science Advances 5 eaav0129Google Scholar

    [37]

    Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M, Tour J M 2014 Nano Res. 7 1232Google Scholar

    [38]

    Cai Q R, Scullion D, Gan W, Falin A, Cizek P, Liu S, Edgar J H, Liu R, Cowie B C C, Santos E J G, Li L H 2020 Phys. Rev. Lett. 125 085902Google Scholar

    [39]

    Li L H, Xing T, Chen Y, Jones R 2014 Adv. Mater. Interfaces 1 1300132Google Scholar

    [40]

    Shen L, Zhao Y, Wang Y, Song R, Yao Q, Chen S, Chai Y 2016 J. Mater. Chem. A 4 5044Google Scholar

    [41]

    Cai Q, Du A, Gao G, et al. 2016 Adv. Funct. Mater. 26 8202Google Scholar

    [42]

    Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar

    [43]

    Dai P, Xue Y, Wang X, Weng Q, Zhang C, Jiang X, Tang D, Wang X, Kawamoto N, Ide Y, Mitome M, Golberg D, Bando Y 2015 Nanoscale 7 18992Google Scholar

    [44]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [45]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B: Condens. Matter Mater. Phys. 51 6868Google Scholar

    [46]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103Google Scholar

    [47]

    Cai Q, Gan W, Falin A, Watanabe K, Taniguchi T, Zhuang J, Hao W, Huang S, Tao T, Chen Y, Li L H 2020 ACS Appl. Mater. Interfaces 12 21985Google Scholar

    [48]

    Madasu M, Hsieh P L, Chen Y J, Huang M H 2019 ACS Appl. Mater. Interfaces 11 38039Google Scholar

    [49]

    Xu L, Cui Q, Tian Y, Jiao A, Zhang M, Li S, Li H, Chen M 2021 Appl. Surf. Sci. 545 149054Google Scholar

    [50]

    Tian Y, Cui Q, Ma H, Jiao A, Wang C, Zhang M, Zheng L, Wang X, Li S, Li G, Chen M 2022 Appl. Surf. Sci. 578 152100Google Scholar

    [51]

    Li S, Zhao J, Liu G, Xu L, Tian Y, Jiao A, Chen M 2021 Adv. Nanotechnol. 32 125401Google Scholar

    [52]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [53]

    Tian Y, Li X, Wang F, Gu C, Zhao Z, Si H, Jiang T 2021 J. Hazard. Mater. 403 124009Google Scholar

    [54]

    Chen Y, Liu H, Li X, Tang S, Gu C, Wei G, Jiang T, Zhou X 2021 Sens. Actuators, B 339 129856Google Scholar

    [55]

    Li X, Liu H, Chen Y, Gu C, Wei G, Zhou J, Jiang T 2021 ACS Sustainable Chem. Eng. 9 12885Google Scholar

    [56]

    Lin S, Lin X, Han S, He L, Zhao H, Zhang J, Hasi W, Wang L 2019 J. Alloys Compd. 805 318Google Scholar

    [57]

    Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L 2020 ACS Appl. Mater. Interfaces 12 2059Google Scholar

    [58]

    Yang Y, Liu J, Fu Z W, Qin D 2014 J. Am. Chem. Soc. 136 8153Google Scholar

    [59]

    Gu H, Tang M, Qin L, Kang S Z, Li X 2022 Environ. Res. 204 112289Google Scholar

    [60]

    Cui X, Li J, Li Y, Liu M, Qiao J, Wang D, Cao H, He W, Feng Y, Yang Z 2022 Spectrochim. Acta, Part A 266 120432Google Scholar

    [61]

    Natan M J 2006 Faraday Discuss. 132 321Google Scholar

    [62]

    Wei W, Wang Y, Ji J, Zuo S, Li W, Bai F, Fan H 2018 Nano Lett. 18 4467Google Scholar

  • 图 1  (a)—(c) 原始h-BN纳米片, h-BN/Ag/Ag2O, h-BN/Ag/Ag2O 320 ℃退火产物的TEM图像(插图为对应纳米材料的溶液); (d), (e) 负载在h-BN上的Ag/Ag2O纳米颗粒在320 ℃退火前和退火后的粒径分布图

    Figure 1.  (a)–(c) TEM images of the original h-BN nanosheets, h-BN/Ag/Ag2O, and h-BN/Ag/Ag2O annealing products at 320 ℃ (Illustration is the solution of the corresponding nanomaterial); (d), (e) particle size distributions of Ag/Ag2O nanoparticles loaded on h-BN before and after annealing at 320 ℃.

    图 2  (a) HAADF-STEM图像; (b)—(e) h-BN/Ag/Ag2O 320 ℃退火复合材料中Ag, O, B和N元素的分布图; (f) 混合后的元素映射图

    Figure 2.  (a) HAADF-STEM image; (b)–(e) distribution of Ag, O, B and N elements in h-BN/Ag/Ag2O annealed composite at 320 ℃; (f) mixed element map.

    图 3  h-BN/Ag/Ag2O 320 ℃退火后的 HRTEM图像(a)和SAED图像(b); 退火前 (c) 和退火后 (d) 的EDS图

    Figure 3.  HRTEM image (a) and SAED image (b) of h-BN/Ag/Ag2O after annealed in 320 ℃; EDS image before (c) and after (d) annealed of h-BN/Ag/Ag2O.

    图 4  (a) 原始h-BN, h-BN/Ag/Ag2O和h-BN/Ag/Ag2O 320 ℃退火复合材料的XRD图谱; (b) h-BN/Ag/Ag2O在不同温度下退火所得产物的紫外-可见光-近红外吸收光谱; (c) h-BN, h-BN/Ag/Ag2O和h-BN/Ag/Ag2O 320 ℃退火复合材料的带隙

    Figure 4.  (a) XRD spectrum of original h-BN nanosheets, h-BN/Ag/Ag2O and h-BN/Ag/Ag2O annealed 320 ℃; (b) ultraviolet-visible-near-infrared absorption spectra of materials annealed by h-BN/Ag/Ag2O at different temperatures; (c) band gaps of h-BN, h-BN/Ag/Ag2O and h-BN/Ag/Ag2O annealed at 320 ℃.

    图 5  h-BN, h-BN/Ag/Ag2O和h-BN/Ag/Ag2O 320 ℃退火后的光电流响应(a)和 PL光谱(b)

    Figure 5.  Photocurrent response (a) and PL spectra (b) of h-BN, h-BN/Ag/Ag2O and h-BN/Ag/Ag2O after annealed at 320 ℃.

    图 6  (a) 不同退火温度下获得的h-BN/Ag/Ag2O复合材料作为基底, 对CV (10–6 M)分子进行拉曼测试得到的SERS光谱, 插图为在320 ℃附近退火后得到的SERS光谱. (b) 不同退火温度的基底对应的CV分子的SERS光谱在1177, 1593, 1621 cm–1处特征峰的强度分布, 插图为在320 ℃附近退火后的基底所对应的特征峰强度分布

    Figure 6.  (a) SERS spectrum of CV (10–6 M) molecules was obtained by Raman test on h-BN/Ag/Ag2O composites at different annealing temperatures, the inset shows the SERS spectrum obtained after annealing near 320 ℃. (b) Intensity distribution of characteristic peaks of CV molecules corresponding to substrates with different annealing temperatures at 1177, 1593 and 1621 cm–1, the inset shows the characteristic peak intensity distribution corresponding to the substrate after annealing near 320 ℃.

    图 7  (a) 不同浓度的CV的SERS光谱; (b) CV分子在1621 cm–1处的SERS强度和分子浓度的对数之间的关系; (c) 不同浓度的R6G的SERS光谱; (d) R6G分子在1502 cm–1的SERS强度和分子浓度的对数之间的关系

    Figure 7.  (a) SERS spectra of CV with different concentrations; (b) relationship between SERS intensity and logarithm of molecular concentration of CV molecule at 1621 cm–1; (c) SERS spectrum of R6G with different concentrations; (d) relationship between SERS intensity and logarithm of molecular concentration of R6G at 1502 cm–1.

    图 8  (a)不同浓度的PBV的SERS光谱; (b) PBV分子在1619 cm–1处的SERS强度和分子浓度的对数之间的关系

    Figure 8.  (a) SERS spectrum of PBV with different concentrations; (b) relationship between SERS intensity and logarithm of molecular concentration of PBV at 1619 cm–1.

    图 9  (a) 以PBV (10–6 M)为探针分子, 在h-BN/Ag/Ag2O 320 ℃退火复合材料上随机选取8个不同位置的点进行检测, 得到的SERS光谱; (b) PBV分子位于1619 cm–1处的拉曼特征峰强度的变化情况; (c) 在39 μm×39 μm的正方形区域内等距离取得169个点位得到SERS光谱, 峰位在1619 cm–1处的强度变化情况; (d) 拉曼信号峰位在1619 cm–1处强度的RSD

    Figure 9.  (a) Using PBV (10–6 M) as probe molecule, the SERS spectrum was obtained by randomly selecting 8 points at different positions on the h-BN/Ag/Ag2O annealed composite at 320 ℃; (b) change of Raman characteristic peak intensity of PBV at 1619 cm–1; (c) 169 sites were obtained equidistant in a square area of 39 μm×39 μm to obtain SERS spectrum, with the intensity change at 1619 cm–1; (d) Raman signal peak at 1619 cm–1 intensity RSD.

    图 10  (a) 浓度为10–6 M的PBV通过单独添加K+, Ca2+, Na+和Mg2+离子(10–3 M)后的拉曼光谱; (b) 在离子干扰的情况下PBV分子在1619 cm–1处的拉曼峰强度的波动; (c) 浓度为10–6 M的PBV与酸奶、气泡水和彩色蛋糕提取液混合的拉曼光谱; (d) 在添加三种干扰物质后1619 cm–1 处拉曼峰强度的变化

    Figure 10.  (a) Raman spectra of PBV with a concentration of 10–6 M by adding K+, Ca2+, Na+ and Mg2+ (10–3 M) alone; (b) the fluctuation of Raman peak intensity of PBV molecule at 1619 cm–1 in the presence of ion interference; (c) Raman spectra of PBV at a concentration of 10–6 M mixed with yogurt, sparkling water and colored cake extract; (d) change in Raman peak intensity at 1619 cm–1 after the addition of three interfering substances.

  • [1]

    Zhang Y, Hu L, Liu X, Liu B, Wu K 2015 Food Chem. 166 352Google Scholar

    [2]

    Nevado J J B, Flores J R, Llerena M J V, Fariñas N R 1999 Talanta 48 895Google Scholar

    [3]

    Akbarian Y, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Sens. Actuators, B 273 228Google Scholar

    [4]

    Bijad M, Karimi-Maleh H, Farsi M, Shahidi S A 2017 J. Food Meas. Charact. 12 634Google Scholar

    [5]

    Darabi R, Shabani-Nooshabadi M 2021 Food Chem. 339 127841Google Scholar

    [6]

    Ntrallou K, Gika H, Tsochatzis E 2020 Foods 9 58Google Scholar

    [7]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2018 Talanta 176 208Google Scholar

    [8]

    Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H 2019 Composites Part B 172 666Google Scholar

    [9]

    Zhang J, Wang X, Zhang S, Wang W, Hojo M, Chen Z 2014 J. Electrochem. Soc. 161 H453Google Scholar

    [10]

    Duman S, Erbas Z, Soylak M 2020 Microchem. J. 159 105468Google Scholar

    [11]

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) 2013 EFSA J. 11 2818

    [12]

    Perez-Urquiza M, Beltran J L 2000 J. Chromatogr. A 898 271Google Scholar

    [13]

    Ozdemir Y, Akkan A A 1999 Turk. J. Chem. 23 221

    [14]

    Unsal Y E, Soylak M, Tuzen M 2015 Environ. Monit. Assess. 187 203Google Scholar

    [15]

    Yoshioka N, Ichihashi K 2008 Talanta 74 1408Google Scholar

    [16]

    Liu E, Fan X, Yang Z, Han L, Li S, Huang Y, Liao K, Cai L 2022 Spectrochim. Acta, Part A 276 121229Google Scholar

    [17]

    Zhang Y, Yang Z, Zou Y, Farooq S, Li Y, Zhang H 2023 Food Chem. 412 135563Google Scholar

    [18]

    Wang C M, Roy P K, Juluri B K, Chattopadhyay S 2018 Sens. Actuators, B 261 218Google Scholar

    [19]

    Koberling F, Gryczynski Z K, Gregor I, Berer T, Klar T A, Jacak J, Buchegger B, Langer G 2019 Proc. SPIE 10884 18840UGoogle Scholar

    [20]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [21]

    Schlucker S 2014 Angew. Chem. Int. Ed. 53 4756Google Scholar

    [22]

    Kanipe K N, Chidester P P, Stucky G D, Moskovits M 2016 ACS Nano 10 7566Google Scholar

    [23]

    Cho W J, Kim Y, Kim J K 2012 ACS Nano 6 249Google Scholar

    [24]

    Xie S, Chen D, Gu C, Jiang T, Zeng S, Wang Y Y, Ni Z, Shen X, Zhou J 2021 ACS Appl. Mater. Interfaces 13 33345Google Scholar

    [25]

    Wang Y, Zhang M, Yu H, Zuo Y, Gao J, He G, Sun Z 2019 Appl. Catal. B 252 174Google Scholar

    [26]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [27]

    Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar

    [28]

    Jing X X, Li D Q, Zhang Y, Hou X Y, Jiang J, Fan X C, Wang M C, Feng S P, Yu Y F, Lu J P, Hu Z L, Ni Z H 2021 Chin. Phys. Lett. 38 074203Google Scholar

    [29]

    Jiao A, Cui Q, Li S, Tian Y, Ma H, Wang C, Zhang M, Chen M, Li G, Liu X 2022 Opt. Express 30 588Google Scholar

    [30]

    Yu D, Xu L, Zhang H, Li J, Wang W, Yang L, Jiang X, Zhao B 2023 Chin. Chem. Lett. 34 107771Google Scholar

    [31]

    Xue W, Han B, Ma H, Hou X, Wang J J, Li R, Zhang Y 2023 Chem. Eng. J. Adv. 13 100440Google Scholar

    [32]

    Ji S, Kou S, Wang M, Qiu H, Sun X, Dou J, Yang Z 2019 Appl. Surf. Sci. 489 1002Google Scholar

    [33]

    Xu L, Zhang H, Tian Y, Jiao A, Li S, Tan Y, Chen M, Chen F 2020 Talanta 209 120535Google Scholar

    [34]

    Zhang H, Li G, Li S, Xu L, Tian Y, Jiao A, Liu X, Chen F, Chen M 2018 Appl. Surf. Sci. 457 684Google Scholar

    [35]

    Peng Q, Ji W, De S 2012 Comput. Mater. Sci. 56 11Google Scholar

    [36]

    Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Science Advances 5 eaav0129Google Scholar

    [37]

    Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q, Yu T, Ajayan P M, Tour J M 2014 Nano Res. 7 1232Google Scholar

    [38]

    Cai Q R, Scullion D, Gan W, Falin A, Cizek P, Liu S, Edgar J H, Liu R, Cowie B C C, Santos E J G, Li L H 2020 Phys. Rev. Lett. 125 085902Google Scholar

    [39]

    Li L H, Xing T, Chen Y, Jones R 2014 Adv. Mater. Interfaces 1 1300132Google Scholar

    [40]

    Shen L, Zhao Y, Wang Y, Song R, Yao Q, Chen S, Chai Y 2016 J. Mater. Chem. A 4 5044Google Scholar

    [41]

    Cai Q, Du A, Gao G, et al. 2016 Adv. Funct. Mater. 26 8202Google Scholar

    [42]

    Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar

    [43]

    Dai P, Xue Y, Wang X, Weng Q, Zhang C, Jiang X, Tang D, Wang X, Kawamoto N, Ide Y, Mitome M, Golberg D, Bando Y 2015 Nanoscale 7 18992Google Scholar

    [44]

    Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar

    [45]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B: Condens. Matter Mater. Phys. 51 6868Google Scholar

    [46]

    Han W Q, Wu L, Zhu Y, Watanabe K, Taniguchi T 2008 Appl. Phys. Lett. 93 223103Google Scholar

    [47]

    Cai Q, Gan W, Falin A, Watanabe K, Taniguchi T, Zhuang J, Hao W, Huang S, Tao T, Chen Y, Li L H 2020 ACS Appl. Mater. Interfaces 12 21985Google Scholar

    [48]

    Madasu M, Hsieh P L, Chen Y J, Huang M H 2019 ACS Appl. Mater. Interfaces 11 38039Google Scholar

    [49]

    Xu L, Cui Q, Tian Y, Jiao A, Zhang M, Li S, Li H, Chen M 2021 Appl. Surf. Sci. 545 149054Google Scholar

    [50]

    Tian Y, Cui Q, Ma H, Jiao A, Wang C, Zhang M, Zheng L, Wang X, Li S, Li G, Chen M 2022 Appl. Surf. Sci. 578 152100Google Scholar

    [51]

    Li S, Zhao J, Liu G, Xu L, Tian Y, Jiao A, Chen M 2021 Adv. Nanotechnol. 32 125401Google Scholar

    [52]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [53]

    Tian Y, Li X, Wang F, Gu C, Zhao Z, Si H, Jiang T 2021 J. Hazard. Mater. 403 124009Google Scholar

    [54]

    Chen Y, Liu H, Li X, Tang S, Gu C, Wei G, Jiang T, Zhou X 2021 Sens. Actuators, B 339 129856Google Scholar

    [55]

    Li X, Liu H, Chen Y, Gu C, Wei G, Zhou J, Jiang T 2021 ACS Sustainable Chem. Eng. 9 12885Google Scholar

    [56]

    Lin S, Lin X, Han S, He L, Zhao H, Zhang J, Hasi W, Wang L 2019 J. Alloys Compd. 805 318Google Scholar

    [57]

    Mei R, Wang Y, Yu Q, Yin Y, Zhao R, Chen L 2020 ACS Appl. Mater. Interfaces 12 2059Google Scholar

    [58]

    Yang Y, Liu J, Fu Z W, Qin D 2014 J. Am. Chem. Soc. 136 8153Google Scholar

    [59]

    Gu H, Tang M, Qin L, Kang S Z, Li X 2022 Environ. Res. 204 112289Google Scholar

    [60]

    Cui X, Li J, Li Y, Liu M, Qiao J, Wang D, Cao H, He W, Feng Y, Yang Z 2022 Spectrochim. Acta, Part A 266 120432Google Scholar

    [61]

    Natan M J 2006 Faraday Discuss. 132 321Google Scholar

    [62]

    Wei W, Wang Y, Ji J, Zuo S, Li W, Bai F, Fan H 2018 Nano Lett. 18 4467Google Scholar

  • [1] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [2] Liu Wen-Ying, Wang Gong-Tang, Duan Peng-Yi, Zhang Wen-Jie, Zhang Can, Hu Xiao-Xuan, Liu Mei. Surface structure effect of F4TCNQ/MoS2 nanocomposite heteromaterials on surface-enhanced Raman scattering. Acta Physica Sinica, 2023, 72(3): 037402. doi: 10.7498/aps.72.20221958
    [3] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [4] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [5] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [6] Liao Jun-Yi, Wu Juan-Xia, Dang Chun-He, Xie Li-Ming. Methods of transferring two-dimensional materials. Acta Physica Sinica, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [7] Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua. Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms. Acta Physica Sinica, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [8] Zhao Xing, Hao Qi, Ni Zhen-Hua, Qiu Teng. Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis. Acta Physica Sinica, 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [9] Xu Yi-Quan, Wang Cong. All-optical devices based on two-dimensional materials. Acta Physica Sinica, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [10] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [11] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [12] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [13] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [14] Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Physica Sinica, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [15] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [16] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [17] Guo Xu-Dong, Tang Jun, Liu Wen-Yao, Guo Hao, Fang Guo-Cheng, Zhao Miao-Miao, Wang Lei, Xia Mei-Jing, Liu Jun. Application of cone-cylinder combined fiber probe to surface enhanced Raman scattering. Acta Physica Sinica, 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [18] Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua. Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Acta Physica Sinica, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [19] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [20] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
Metrics
  • Abstract views:  2630
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  07 July 2023
  • Accepted Date:  04 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回