Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube

Zhu Yan-Rong Chang Zheng-Shi

Citation:

Effects of pulse voltage rising edge on discharge evolution of He atmospheric pressure plasma jet in dielectric tube

Zhu Yan-Rong, Chang Zheng-Shi
PDF
HTML
Get Citation
  • In this work, we employ pulse voltage to drive an atmospheric pressure plasma jet (APPJ) in Helium, and consider mainly the evolution of discharge inside tube. Specifically, the effects of rising edge on the discharge evolution are studied through the simulation and experiment. The spatiotemporal evolution of electron density, ionization source, electron temperature and excited helium atom are evaluated. Besides, the mechanism affecting the rise time is analyzed by the parameters such as discharge current, sheath thickness and surface charge density distribution. In the considered cases, the ionization wave propagates to the ground electrode and downstream of the active electrode in the dielectric tube. The plasma with faster rising edge has larger electron temperature, discharge current, electron density and electric field strength. With the change of voltage rising edge, there occur two discharge modes: hollow mode and solid mode in dielectric barrier discharge (DBD) area. When the rising edge is of nanosecond and sub microsecond, it develops into hollow mode, and changes into solid mode after the rising edge has continued to increase. Both discharge modes are essentially affected by the sheath thickness, the electric field distribution, and the surface charge density inside the tube. When the sheath thickness is less than 1.8 mm, the plasma usually propagates in hollow mode, and when the sheath thickness is equal to 1.8 mm, the radial propagation range of the plasma is limited and changes into solid propagation. In the DBD region, when the electric field is mainly axial component, the plasma propagates in the mode at the beginning of discharge; inside the ground electrode, owing to the fact that the applied electric field is deviated from the radial direction, and that the positive charge deposited on the tube wall forms a radial self-built electric field, the strong radial electric field formed by the superposition of the two fields causes the discharge to propagate in hollow mode.
      Corresponding author: Chang Zheng-Shi, changzhsh1984@163.com
    • Funds: Project supported by the State Key Laboratory for Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1706) and the National Natural Science Foundation of China (Grant No. 51777165)
    [1]

    Chang Z S, Li G Q, Liu J R, Xu D H, Shi X M, Zhang G J 2019 Plasma Processes Polym. 16 e1800165 10

    [2]

    Xu G M, Shi X M, Cai J F, Chen S L, Li P, Yao C W, Chang Z S, Zhang G J 2015 Wound Repair Regen. 23 878Google Scholar

    [3]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Kostya O 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [4]

    Chen S L, Wang S, Wang Y B, Guo B H, Li G Q, Chang Z S, Zhang G J 2017 Appl. Surf. Sci. 414 107Google Scholar

    [5]

    Naidis G V 2012 J. Appl. Phys. 112 103304Google Scholar

    [6]

    Zheng Y S, Wang L J, Wang D 2018 J. Appl. Phys. 124 123301Google Scholar

    [7]

    Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 630 1Google Scholar

    [8]

    Zhang C, Shao T, Wang R X, Zhou Z S, Zhou Y X, Yan P 2014 Phys. Plasmas 21 103505Google Scholar

    [9]

    Chang Z S, Yao C W, Chen S L, Zhang G J 2016 Phys. Plasmas 23 093503Google Scholar

    [10]

    Chang Z S, Zhao N, Li G Q, Zhang G J 2018 Sci. Rep. 8 7599Google Scholar

    [11]

    Huang B D, Takashima K, Zhu X M, Pu Y K 2015 J. Phys. D:Appl. Phys. 48 125202Google Scholar

    [12]

    Liu Y D, Tan Z Y, Chen X X, Li X T, Wang X L, Zhang H M, Pan J 2018 IEEE Trans. Plasma Sci. 46 2865Google Scholar

    [13]

    Iza F, Walsh J L, Kong M G 2009 IEEE Trans. Plasma Sci. 37 1289Google Scholar

    [14]

    Ayan H, Staack D, Fridman G, Gutsol A, Mukhin Y, Starikovskii A, Fridman A, Friedman G 2009 J. Phys. D:Appl. Phys. 42 125202Google Scholar

    [15]

    Qian M Y, Li G, Liu S Q, Zhang Y, Li S, Lin Z B, Wang D Z 2017 Plasma Sci. Technol. 19 064015Google Scholar

    [16]

    Zhang Y, Liang X, Li J, Wei L 2018 IEEE Trans. Plasma Sci. 46 103Google Scholar

    [17]

    Wu S, Xu H, Lu X, Pan Y 2013 Plasma Processes Polym. 10 136Google Scholar

    [18]

    Gong W W, Huang Q J, Wang Z, Yang Y 2014 IEEE Trans. Plasma Sci. 42 2868Google Scholar

    [19]

    赵勇, 王瑞雪, 章程, 郑书河, 邵涛 2019 电工技术学报 34 174

    Zhao Y, Wang R X, Zhang C, Zheng S H, Shao T 2019 Tran. China, Electrotechnical Soc. 34 174 (in Chinese)

    [20]

    Chen S L, Chen X Y, Yao C W, Xu G M, Chang Z S, Zhang G J 2018 Phys. Plasmas 25 083510Google Scholar

    [21]

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spectr. Anal. 28 2754Google Scholar

    [22]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [23]

    Li G Q, Chen X, Zhu Y R, Guo H L, Zhao N, Chang Z S 2021 J. Phys. D: Appl. Phys. 54 285204Google Scholar

    [24]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [25]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [26]

    Zhu P, Li B, Duan Z C, Ouyang J T 2018 J. Phys. D:Appl. Phys. 51 405202Google Scholar

    [27]

    Kettlitz M, Hoft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [28]

    Jiang N, Ji A, Cao Z 2010 J. Appl. Phys. 108 033302Google Scholar

    [29]

    Jansky J, Bourdon A 2011 Appl. Phys. Lett. 99 161504Google Scholar

    [30]

    Ning W J, Dai D, Li L C 2018 Plasma Processes Polym. 15 e1800010Google Scholar

    [31]

    Li J R, Zhang J, Wang Y H, Jiang Y Y, Wang D Z 2021 IEEE Trans. Plasma Sci. 49 234Google Scholar

    [32]

    Babaeva N Y, Naidis G V 2016 IEEE Trans. Plasma Sci. 44 899Google Scholar

    [33]

    Jansky J, Bourdon A 2011 Eur. Phys. J. Appl. Phys. 55 13810Google Scholar

    [34]

    Sato Y, Ishikawa K, Tsutsumi T, Hori M 2020 Appl. Phys. Express 13 086001Google Scholar

  • 图 1  等离子体产生与诊断实验平台示意图

    Figure 1.  Schematic diagram of plasma generation and diagnosis experimental platform.

    图 2  仿真模型示意图 ①管内部, ②管壁, ③环形电极, ④空气域

    Figure 2.  Schematic of the simulation configuration. ① the glass tube interior, ② the tube wall, ③ the ring electrode, ④ ambient air

    图 3  实验和仿真中50 ns上升沿时的电压电流波形 (a) 实验总电流波形; (b)剔除位移分量的实验电流波形, 其中序号1—27分别表示ICCD连续拍摄的时间段; (c) 仿真总电流波形

    Figure 3.  Discharge voltage and current waveforms with rising edge of 50 ns in experiment and simulation: (a) Experimental full current waveform; (b) experimental current waveform excluding displacement current, the number 1–27 represent the time interval of ICCD continuous acquisition respectively; (c) simulation full current waveform.

    图 4  放电在介质管内的发展过程 (a) ICCD图像; (b)发展过程中He*的密度分布

    Figure 4.  Propagating process of discharge in dielectric tube: (a) ICCD picture; (b) He* distribution in evolution.

    图 5  管内等离子体发展过程中的 (a)电子密度ne和(b)电离源项Re

    Figure 5.  Distribution of electron density and ionization source during plasma evolution in tube: (a) Electron density; (b) ionization source.

    图 6  等离子体传播到地电极“上游”边沿(z = 2 cm)以及离开地电极(z = 2.5 cm)后的电子密度ne分布

    Figure 6.  Electron density distribution of plasma propagating to the upstream edge of the ground electrode (z = 2 cm) and leaving the ground electrode (z = 2.5 cm).

    图 7  不同上升沿时, DBD区的仿真和实验对比 (a) 50 ns; (b) 200 ns; (c) 500 ns (za, zbzc分别代表GSD和FWHM提取位置)

    Figure 7.  Simulation and experimental results comparison of DBD area under different rising edge: (a) 50 ns; (b) 200 ns; (c) 500 ns. (za, zb and zc represent the data extraction position of GSD and FWHM respectively).

    图 8  正脉冲放电期间的电子密度及电离源项分布 (a) z = 0.3, 0.9 cm处的电子密度ne; (b) z = 0.3, 0.9 cm处的电离源项Re; (c) z = 2.0, 2.5 cm处的电子密度ne; (d) z = 2.0, 2.5 cm处的电离源项Re

    Figure 8.  Distribution of electron density and ionization source during positive discharge: (a) Electron density when z = 0.3, 0.9 cm; (b) ionization source when z = 0.3, 0.9 cm; (c) electron density when z = 2.0, 2.5 cm; (d) ionization source when z = 2.0, 2.5 cm.

    图 9  不同上升沿的外施电压下, 放电头部位于z = 0.9 cm时管内的电子密度、离子密度、电子温度、鞘层厚度及径向电场强度的径向分布 (a) 50 ns; (b) 2000 ns

    Figure 9.  Radial distribution of electron density, ion density, electron temperature, sheath, and radial electric field intensity under the applied voltage with different rising edge when the head of plasma at z = 0.9 cm: (a) 50 ns; (b) 2000 ns

    图 10  2000 ns上升沿时, “子弹”头部轴向和径向电场的径向分布

    Figure 10.  Radial distribution of axial and radial electric fields in the head of plasma under rising edge of 2000 ns.

    图 11  2000 ns上升沿时, 地电极内部电离源项Re的演化过程

    Figure 11.  Evolution of Re in tube under ground electrode in rising edge of 2000 ns.

    图 12  2000 ns上升沿“子弹”头部位于不同位置时, 地电极内部介质管内壁表面电荷密度和径向电场沿轴向的分布 (a) z = 2.3 cm; (b) z = 2.5 cm

    Figure 12.  Axial distribution of surface charge density and radial electric field on the inner wall of dielectric tube in the ground electrode when the head of plasma at different positions under rising edge of 2000 ns: (a) z = 2.3 cm; (b) z = 2.5 cm.

    图 13  不同上升沿, z = 1.75 cm处管内壁表面电荷密度和径向电场强度随时间的变化 (a) 50 ns; (b) 2000 ns

    Figure 13.  Time dependence of surface charge density and radial electric field intensity during different rising edge at z = 1.75 cm: (a) 50 ns; (b) 2000 ns.

    表 1  模型中考虑的粒子及反应

    Table 1.  Plasma chemistry included in the model.

    No.反应式反应速率或汤森系数参考文献
    R1e + He → e + Heα1 [24]
    R2e + He → e + He*α2 [24]
    R3e + He → 2e + He+α3 [24]
    R4e + He* → 2e + He+$ 4.661 \times 10^{-16} T_{\rm e}^{0.6}\cdot {\rm e}^{(-55400/T_{\rm e})} $ [25]
    R52He* → e + He+ + He4.5 × 10–16 [25]
    R62e + He+ → e + He*6.186 × 10–39 $ T_{\rm e}^{-4.4} $ [25]
    R72He + He+ → He + ${\rm{He}}_2^+ $1 × 10–43 [25]
    R82e + ${\rm{He}}_2^+ $ → e + He + He*2.8 × 10–32 [25]
    R9e + He + He+ → He + He*6.66 × 10–42 $ T_{\rm e}^{-2} $ [25]
    R10e + He + ${\rm{He}}_2^+ $ → 2He + He*3.5 × 10–39 [26]
    R112He* → e + ${\rm{He}}_2^+ $2.3 × 10–15 [26]
    R12e + ${\rm{He}}_2^+ $ → He + He*5.386 × 10–13 $ T_{\rm e}^{-0.5} $ [25]
    注: Te 为电子温度(eV); α1, α2, α3 通过玻尔兹曼求解器求解[24] , 双体和三体反应的单位分别为m3·s–1和m6·s–1.
    DownLoad: CSV

    表 2  实验电流峰值时刻不同上升沿在管内za, zb, zc位置处的灰度值标准差和相对强度半高宽及仿真中电流峰值时刻对应位置处的相对强度半高宽统计

    Table 2.  GSD and the relative intensity FWHM at za, zb, zc of APPJ driven by different rising time at the time of current peak in experiment and the FWHM at the corresponding position at the time of current peak in simulation.

    位置50 ns200 ns500 ns
    实验光强灰度值标准差za28.633.349.6
    zb35.337.750.4
    zc31.030.046.9
    实验相对强度半高宽/mmza2.922.762.55
    zb2.482.311.98
    zc2.912.381.83
    仿真He*分布半高宽/mmza3.363.122.76
    zb3.283.162.88
    zc3.443.302.72
    DownLoad: CSV
  • [1]

    Chang Z S, Li G Q, Liu J R, Xu D H, Shi X M, Zhang G J 2019 Plasma Processes Polym. 16 e1800165 10

    [2]

    Xu G M, Shi X M, Cai J F, Chen S L, Li P, Yao C W, Chang Z S, Zhang G J 2015 Wound Repair Regen. 23 878Google Scholar

    [3]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Kostya O 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [4]

    Chen S L, Wang S, Wang Y B, Guo B H, Li G Q, Chang Z S, Zhang G J 2017 Appl. Surf. Sci. 414 107Google Scholar

    [5]

    Naidis G V 2012 J. Appl. Phys. 112 103304Google Scholar

    [6]

    Zheng Y S, Wang L J, Wang D 2018 J. Appl. Phys. 124 123301Google Scholar

    [7]

    Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K 2016 Phys. Rep. 630 1Google Scholar

    [8]

    Zhang C, Shao T, Wang R X, Zhou Z S, Zhou Y X, Yan P 2014 Phys. Plasmas 21 103505Google Scholar

    [9]

    Chang Z S, Yao C W, Chen S L, Zhang G J 2016 Phys. Plasmas 23 093503Google Scholar

    [10]

    Chang Z S, Zhao N, Li G Q, Zhang G J 2018 Sci. Rep. 8 7599Google Scholar

    [11]

    Huang B D, Takashima K, Zhu X M, Pu Y K 2015 J. Phys. D:Appl. Phys. 48 125202Google Scholar

    [12]

    Liu Y D, Tan Z Y, Chen X X, Li X T, Wang X L, Zhang H M, Pan J 2018 IEEE Trans. Plasma Sci. 46 2865Google Scholar

    [13]

    Iza F, Walsh J L, Kong M G 2009 IEEE Trans. Plasma Sci. 37 1289Google Scholar

    [14]

    Ayan H, Staack D, Fridman G, Gutsol A, Mukhin Y, Starikovskii A, Fridman A, Friedman G 2009 J. Phys. D:Appl. Phys. 42 125202Google Scholar

    [15]

    Qian M Y, Li G, Liu S Q, Zhang Y, Li S, Lin Z B, Wang D Z 2017 Plasma Sci. Technol. 19 064015Google Scholar

    [16]

    Zhang Y, Liang X, Li J, Wei L 2018 IEEE Trans. Plasma Sci. 46 103Google Scholar

    [17]

    Wu S, Xu H, Lu X, Pan Y 2013 Plasma Processes Polym. 10 136Google Scholar

    [18]

    Gong W W, Huang Q J, Wang Z, Yang Y 2014 IEEE Trans. Plasma Sci. 42 2868Google Scholar

    [19]

    赵勇, 王瑞雪, 章程, 郑书河, 邵涛 2019 电工技术学报 34 174

    Zhao Y, Wang R X, Zhang C, Zheng S H, Shao T 2019 Tran. China, Electrotechnical Soc. 34 174 (in Chinese)

    [20]

    Chen S L, Chen X Y, Yao C W, Xu G M, Chang Z S, Zhang G J 2018 Phys. Plasmas 25 083510Google Scholar

    [21]

    Li C, Tang X L, Qiu G 2008 Spectrosc. Spectr. Anal. 28 2754Google Scholar

    [22]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [23]

    Li G Q, Chen X, Zhu Y R, Guo H L, Zhao N, Chang Z S 2021 J. Phys. D: Appl. Phys. 54 285204Google Scholar

    [24]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [25]

    Ning W J, Dai D, Zhang Y H, Han Y X, Li L C 2018 J. Phys. D:Appl. Phys. 51 125204Google Scholar

    [26]

    Zhu P, Li B, Duan Z C, Ouyang J T 2018 J. Phys. D:Appl. Phys. 51 405202Google Scholar

    [27]

    Kettlitz M, Hoft H, Hoder T, Weltmann K D, Brandenburg R 2013 Plasma Sources Sci. Technol. 22 025003Google Scholar

    [28]

    Jiang N, Ji A, Cao Z 2010 J. Appl. Phys. 108 033302Google Scholar

    [29]

    Jansky J, Bourdon A 2011 Appl. Phys. Lett. 99 161504Google Scholar

    [30]

    Ning W J, Dai D, Li L C 2018 Plasma Processes Polym. 15 e1800010Google Scholar

    [31]

    Li J R, Zhang J, Wang Y H, Jiang Y Y, Wang D Z 2021 IEEE Trans. Plasma Sci. 49 234Google Scholar

    [32]

    Babaeva N Y, Naidis G V 2016 IEEE Trans. Plasma Sci. 44 899Google Scholar

    [33]

    Jansky J, Bourdon A 2011 Eur. Phys. J. Appl. Phys. 55 13810Google Scholar

    [34]

    Sato Y, Ishikawa K, Tsutsumi T, Hori M 2020 Appl. Phys. Express 13 086001Google Scholar

  • [1] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [2] Dong Wan, Xu Hai-Wen, Dai Zhong-Ling, Song Yuan-Hong, Wang You-Nian. Gap length effect on discharge mode and etching profiles in asymmetric dual frequency capacitive CF4/Ar discharges. Acta Physica Sinica, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [3] Effects of Pulse Voltage Rising Edge on the Discharge Evolution of He APPJ in Dielectric Tube. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210470
    [4] Lei Jian-Ping, He Li-Ming, Chen Yi, Chen Gao-Cheng, Zhao Bing-Bing, Zhao Zhi-Yu, Zhang Hua-Lei, Deng Jun, Fei Li. Experimental study on gliding discharge mode of rotating gliding arc discharge plasma. Acta Physica Sinica, 2020, 69(19): 195203. doi: 10.7498/aps.69.20200672
    [5] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [7] Bo Yong, Zhao Qing, Luo Xian-Gang, Liu Ying, Chen Yu-Xu, Liu Jian-Wei. Study on transmission characteristics of electromagnetic waves in inhomogeneously magnetized plasma sheath. Acta Physica Sinica, 2016, 65(3): 035201. doi: 10.7498/aps.65.035201
    [8] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [9] Zhao Xiao-Yun, Zhang Bing-Kai, Zhang Kai-Yin. The Bohm criterion for a plasma sheath with two species of charged dust particles. Acta Physica Sinica, 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [10] Duan Ping, Cao An-Ning, Shen Hong-Juan, Zhou Xin-Wei, Qin Hai-Juan, Liu Jin-Yuan, Qing Shao-Wei. Effect of electron temperature on the characteristics of plasma sheath in Hall thruster. Acta Physica Sinica, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] Chen Jun-Ying, Dong Li-Fang, Li Yuan-Yuan, Song Qian, Ji Ya-Fei. Plasma parameters of square superlattice pattern in a dielectric barrier discharge. Acta Physica Sinica, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [12] Wu Jing, Liu Guo, Yao Lie-Ming, Duan Xu-Ru. Simulation of interaction between dust particles and plasma sheath and its distribution. Acta Physica Sinica, 2012, 61(7): 075205. doi: 10.7498/aps.61.075205
    [13] Li Xue-Chen, Yuan Ning, Jia Peng-Ying, Chang Yuan-Yuan, Ji Ya-Fei. Characteristics of atmospheric pressure air uniform discharge generated by a plasma needle. Acta Physica Sinica, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [14] Guo Qing-Chao, Zhang Jia-Liang, Liu Li-Ying, Wang De-Zhen. Characterization on the temperature of radio frequency argon capacitive discharge mode transition at atmospheric pressure. Acta Physica Sinica, 2011, 60(2): 025207. doi: 10.7498/aps.60.025207
    [15] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [16] Jiang Nan, Cao Ze-Xian. Experimental studies on an atmospheric pressure He plasma jet. Acta Physica Sinica, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [17] Huang Yong-Xian, Tian Xiu-Bo, Yang Shi-Qin, Ricky Fu, Paul Chu K.. Effect of rise-time patterns on dynamics of sheath expansion during plasma immersion ion implantation. Acta Physica Sinica, 2007, 56(8): 4762-4770. doi: 10.7498/aps.56.4762
    [18] The distribution of dust particles in the plasma sheath. Acta Physica Sinica, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [19] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  5138
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2021
  • Accepted Date:  12 September 2021
  • Available Online:  30 December 2021
  • Published Online:  20 January 2022

/

返回文章
返回