-
In order to study the stability of gliding arc plasma discharge under mal-conditions, an experimental system for studying the high air pressure alternating current rotating gliding arc discharge is built. The discharge characteristics, arc motion characteristics and spectral characteristics of rotating gliding arc discharge are analyzed under high pressure experimentally. Experimental results show that the voltage, current and energy increase in the gliding arc discharge with the increase of air pressure. As the air pressure rises to 0.52 MPa, the discharge energy increases from 84.74 to 147.13 J. With the increase of gas pressure, the breakdown frequency of the arc does not change monotonically, but reaches a maximum value of 26.55 kHz at 0.2 MPa, while the emission spectral intensity increases. The “arc channel mutation” occurs in the process of arc motion under high pressure. The electron excitation temperature in the process of gliding arc discharge is calculated by the two-line method, and the electron excitation temperature of gliding arc discharge is 0.8153 eV at an atmosphere pressure. The electron excitation temperature rises with the increase of air pressure. The excitation temperature increases to 5.3165 eV at an air pressure of 0.4 MPa.
-
Keywords:
- rotating gliding arc plasma /
- high air pressure discharge /
- electron excitation temperature /
- breakdown frequency
[1] Lesueur H, Czernichowski A, Chapelle J F. R. Patent 2639172[1988]
[2] 杜长明 2015 非热电弧等离子体技术与应用 (北京: 化学工业出版社) 第15页
Du C M 2015 Non-Thermal Arc Plasma Technology and Application (Beijing: Chemical Industry Press) p15 (in Chinese)
[3] 张浩, 朱风森, 李晓东, 杜长明, 薄拯, 岑可法 2015 高电压技术 41 2930Google Scholar
Zhang H, Zhu F S, Li X D, Du C M, Bao Z, Cen K F 2015 High Voltage Eng. 41 2930Google Scholar
[4] 雷健平, 何立明, 陈一, 陈高成, 赵兵兵, 赵志宇, 张华磊, 邓俊, 费力 2020 物理学报 19 195203Google Scholar
Lei J P, He L M, Chen Y, Chen G C, Zhao B B, Zhao Z Y, Zhang H L, Deng J, Fei L 2020 Acta Phys. Sin. 19 195203Google Scholar
[5] Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D:Appl. Phys. 38 1Google Scholar
[6] Kim H S, Lee D H, Fridman A, Cho Y I 2014 Int. J. Heat Mass Transfer 77 1075Google Scholar
[7] Kusano Y, Sorensen B F, Andersen T L, Toftegaard H L, Leipold F, Salewski M, Sun Z W, Zhu J J, Li Z S, Alden M 2013 J. Phys. D:Appl. Phys. 46 135203Google Scholar
[8] 杜长明, 李俊岭, 严建华 2008 高电压技术 34 512
Du C M, Li J L, Yan J H 2008 High Voltage Eng. 34 512
[9] 于锦禄 2017 第三届全国青年燃烧学术会议 陕西西安 2017年4月14—17日 第1页
Yu J L 2017 The Third National Young Scholar Meeting on Combustion Research Conference Shaanxi xian, China, April 14–17, 2017 p1 (in Chinese)
[10] 何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921Google Scholar
He L M, Chen Y, Liu X J, Wu Y, Liu P F, Zhang Y H 2016 High Voltage Eng. 42 1921Google Scholar
[11] Sun Z W, Zhu J J, Li Z S, Aldén M, Leipold F, Salewski M, Kusano Y 2013 Opt. Express 21 6028Google Scholar
[12] Du C M, Shi T H, Sun Y W, Zhuang X F 2008 J. Hazard. Mater. 154 1192Google Scholar
[13] 鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930Google Scholar
Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Eng. 44 1930Google Scholar
[14] Chen Z, Yu J L, Cheng W D, Jiang Y J, Jiang L Y, Tian Y, Zhang L 2021 J. Phys. D:Appl. Phys. 54 225203Google Scholar
[15] Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar
[16] 汪宇, 李晓东, 余量, 严建华 2011 物理学报 60 035203Google Scholar
Wang Y, Li X D, Yu L, Yan J H 2011 Acta Phys. Sin. 60 035203Google Scholar
[17] Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 102704
[18] 张磊, 于锦禄, 陈一, 胡长淮, 蒋永健, 田裕 2021 航空学报 42 124308Google Scholar
Zhang L, Yu J L, Chen Y, Hu C H, Jiang Y J, Tian Y 2021 Acta Aeronaut. Astronaut. Sin. 42 124308Google Scholar
[19] Liu X, Subash A A, Bao Y, Hurtig T, Li Z S, Ehn A, Larfeldt J, Lörstad D, Nilson T, Fureby C 2021 American Institute of Aeronautics and Astronautics 2021 Scitech Forum Reston VA, USA, January 11–21, 2021 p0653
[20] 何立明, 于锦禄, 曾昊 2019 等离子体点火与助燃技术 (北京: 航空工业出版社) 第71页
He L M, Yu J L, Zeng H 2019 The Technology of Plasma Ignition and Assisted Combustion (Beijing: Aviation Industry Press) p71 (in Chinese)
[21] 柯以侃, 董慧茹 1998 分析化学手册(第三卷) (北京: 化学工业出版社) 第36页
Ke Y K, Dong H R 1998 Handbook of Analytical Chemistry (Vol. 3) (Beijing: Chemical Industry Press) p36 (in Chinese)
[22] 孙殿平 2019 物理实验 39 4Google Scholar
Sun D P 2019 Physics Experimentation 39 4Google Scholar
[23] Park H, Choe W 2010 Curr. Appl. Phys. 10 1456Google Scholar
[24] 宋飞龙, 金迪, 贾敏, 宋志杰 2018 光谱学与光谱分析 38 1675
Song F L, Jin D, Jia M, Song Z J 2018 Spectrosc. Spectral. Anal. 38 1675
-
表 1 氮原子光谱数据
Table 1. Structural parameters of capillary of different kind of fluid.
λ/nm E/cm–1 A/s–1 g 391.9001 190120.24 7.56 × 107 3 399.4997 174212.03 1.22 × 108 5 -
[1] Lesueur H, Czernichowski A, Chapelle J F. R. Patent 2639172[1988]
[2] 杜长明 2015 非热电弧等离子体技术与应用 (北京: 化学工业出版社) 第15页
Du C M 2015 Non-Thermal Arc Plasma Technology and Application (Beijing: Chemical Industry Press) p15 (in Chinese)
[3] 张浩, 朱风森, 李晓东, 杜长明, 薄拯, 岑可法 2015 高电压技术 41 2930Google Scholar
Zhang H, Zhu F S, Li X D, Du C M, Bao Z, Cen K F 2015 High Voltage Eng. 41 2930Google Scholar
[4] 雷健平, 何立明, 陈一, 陈高成, 赵兵兵, 赵志宇, 张华磊, 邓俊, 费力 2020 物理学报 19 195203Google Scholar
Lei J P, He L M, Chen Y, Chen G C, Zhao B B, Zhao Z Y, Zhang H L, Deng J, Fei L 2020 Acta Phys. Sin. 19 195203Google Scholar
[5] Fridman A, Chirokov A, Gutsol A 2005 J. Phys. D:Appl. Phys. 38 1Google Scholar
[6] Kim H S, Lee D H, Fridman A, Cho Y I 2014 Int. J. Heat Mass Transfer 77 1075Google Scholar
[7] Kusano Y, Sorensen B F, Andersen T L, Toftegaard H L, Leipold F, Salewski M, Sun Z W, Zhu J J, Li Z S, Alden M 2013 J. Phys. D:Appl. Phys. 46 135203Google Scholar
[8] 杜长明, 李俊岭, 严建华 2008 高电压技术 34 512
Du C M, Li J L, Yan J H 2008 High Voltage Eng. 34 512
[9] 于锦禄 2017 第三届全国青年燃烧学术会议 陕西西安 2017年4月14—17日 第1页
Yu J L 2017 The Third National Young Scholar Meeting on Combustion Research Conference Shaanxi xian, China, April 14–17, 2017 p1 (in Chinese)
[10] 何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921Google Scholar
He L M, Chen Y, Liu X J, Wu Y, Liu P F, Zhang Y H 2016 High Voltage Eng. 42 1921Google Scholar
[11] Sun Z W, Zhu J J, Li Z S, Aldén M, Leipold F, Salewski M, Kusano Y 2013 Opt. Express 21 6028Google Scholar
[12] Du C M, Shi T H, Sun Y W, Zhuang X F 2008 J. Hazard. Mater. 154 1192Google Scholar
[13] 鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930Google Scholar
Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Eng. 44 1930Google Scholar
[14] Chen Z, Yu J L, Cheng W D, Jiang Y J, Jiang L Y, Tian Y, Zhang L 2021 J. Phys. D:Appl. Phys. 54 225203Google Scholar
[15] Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar
[16] 汪宇, 李晓东, 余量, 严建华 2011 物理学报 60 035203Google Scholar
Wang Y, Li X D, Yu L, Yan J H 2011 Acta Phys. Sin. 60 035203Google Scholar
[17] Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 102704
[18] 张磊, 于锦禄, 陈一, 胡长淮, 蒋永健, 田裕 2021 航空学报 42 124308Google Scholar
Zhang L, Yu J L, Chen Y, Hu C H, Jiang Y J, Tian Y 2021 Acta Aeronaut. Astronaut. Sin. 42 124308Google Scholar
[19] Liu X, Subash A A, Bao Y, Hurtig T, Li Z S, Ehn A, Larfeldt J, Lörstad D, Nilson T, Fureby C 2021 American Institute of Aeronautics and Astronautics 2021 Scitech Forum Reston VA, USA, January 11–21, 2021 p0653
[20] 何立明, 于锦禄, 曾昊 2019 等离子体点火与助燃技术 (北京: 航空工业出版社) 第71页
He L M, Yu J L, Zeng H 2019 The Technology of Plasma Ignition and Assisted Combustion (Beijing: Aviation Industry Press) p71 (in Chinese)
[21] 柯以侃, 董慧茹 1998 分析化学手册(第三卷) (北京: 化学工业出版社) 第36页
Ke Y K, Dong H R 1998 Handbook of Analytical Chemistry (Vol. 3) (Beijing: Chemical Industry Press) p36 (in Chinese)
[22] 孙殿平 2019 物理实验 39 4Google Scholar
Sun D P 2019 Physics Experimentation 39 4Google Scholar
[23] Park H, Choe W 2010 Curr. Appl. Phys. 10 1456Google Scholar
[24] 宋飞龙, 金迪, 贾敏, 宋志杰 2018 光谱学与光谱分析 38 1675
Song F L, Jin D, Jia M, Song Z J 2018 Spectrosc. Spectral. Anal. 38 1675
Catalog
Metrics
- Abstract views: 5461
- PDF Downloads: 105
- Cited By: 0