Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on radiation hardness for total ionizing dose effect of ultra-thin shielding layer 300 V SOI LDMOS

Zhang Shu-Hao Yuan Zhang-Yi-An Qiao Ming Zhang Bo

Citation:

Simulation study on radiation hardness for total ionizing dose effect of ultra-thin shielding layer 300 V SOI LDMOS

Zhang Shu-Hao, Yuan Zhang-Yi-An, Qiao Ming, Zhang Bo
PDF
HTML
Get Citation
  • In this work, the linear current degradation mechanism of 300 V silicon-on-insulator laterally double-diffused metal-oxide-semiconductor field effect transistor under total ionizing effect is studied, and a method in radiation-hardness for linear current by introducing an ultra-thin shielding layer is proposed. This new structure is realized with P-type ultra-thin shielding layer implantation under field oxide, in order to prevent the P-type layer from complete surface inversion, thereby truncating the surface current route and mitigating the current degradation effectively. For a laterally double-diffused metal-oxide-semiconductor field effect transistor, linear current degradation can be attributed mainly to holes introduced in the field oxide. In this work, the influence of introduced holes on electrical properties in the transistor oxides under harsh environment is simulated based on device and process simulation software, with optimized layer length, implantation energy, lateral distance and dose window, and the goal of linear current hardness (linear current increment decreasing from 447% in conventional structure to less than 10% in proposed structure) is achieved while maintaining pre-rad and post-rad breakdown voltages above 300 V under total dose of 0–500 krad(Si).
      Corresponding author: Qiao Ming, qiaoming@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174024), and the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2021B1515020031).
    [1]

    Winokur P S, Lum G K, Shaneyfelt M R, Sexton F W, Hash G L, Scott L 1999 IEEE Trans. Nucl. Sci. 46 1494Google Scholar

    [2]

    Barth J L, Dyer C S, Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466Google Scholar

    [3]

    Pease R L 1996 IEEE Trans. Nucl. Sci. 43 442Google Scholar

    [4]

    Oldham T R, Mclean B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [5]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar

    [7]

    Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912Google Scholar

    [8]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [9]

    Jiang J Z, Shu W, Chong K S, Lin T, Zwa Lwin N K, Chang J S, Liu J Y 2016 IEEE International Symposium on Circuits and Systems Montreal, Canada May 22–25, 2016 p5

    [10]

    Xie X D, Yang Z Z, Deng M X, Chen K B, Li W 2019 IEEE Trans. Device Mater. Reliab. 19 242Google Scholar

    [11]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 物理学报 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [12]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [13]

    Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500Google Scholar

    [14]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar

    [15]

    Wu M, Zhang C C, Peng W, Xu J, Jin H, Zeng Y, Chen Z J 2020 IEEE Trans. Nucl. Sci. 67 708Google Scholar

    [16]

    Sorge R, Schmidt J, Reimer F, Wipf C, Korndoerfer F, Pliquett R, Barth R 2019 Nucl. Instr. and Meth. in Phys. Res. 924 166Google Scholar

    [17]

    Ali K B, Gammon P M, Chan C W, Li F, Pathirana V, Trajkovic T, Gity F, Flandre D, Kilchytska V 2017 47 th European Solid State Device Research Conference Leuven, Belgium, September 11–14, 2017 p236

    [18]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H 2009 J. Semicond. 30 014004Google Scholar

    [19]

    Qiao F Y, Pan L Y, Wu D, Liu L F, Xu J 2014 J. Semicond. 35 024003Google Scholar

    [20]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H, Song L M 2008 J. Semicond. 29 2158

    [21]

    Li Y F, Zhu S L, Wu J W, Hong G S, Xu Z 2019 J. Semicond. 40 052401Google Scholar

    [22]

    Asano M, Sekigawa D, Hara K, Aoyagi W, Honda S, Tobita N, Arai Y, Miyoshi T, Kurachi I, Tsuboyama T, Yamada M 2016 Nucl. Instr. and Meth. in Phys. Res. 831 315Google Scholar

    [23]

    Schwank J R, Ferlet- Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522Google Scholar

    [24]

    Huang Y, Li B H, Zhao X, Zheng Z S, Gao J T, Zhang G, Li B, Zhang G H, Tang K, Han Z S, Luo J J 2018 IEEE Trans. Nucl. Sci. 65 1532Google Scholar

    [25]

    Yuan Z Y A, Qiao M, Li X J, Hou D C, Zhang S H, Zhou X, Li Z J, Zhang B 2021 IEEE Trans. Electron Devices 68 2064Google Scholar

    [26]

    Huang Y S, Baliga B J 1991 3rd International Symposium on Power Semiconductor Devices and ICs, Baltimore, USA April 22-24, 1991 27

    [27]

    Imam M, Hossain Z, Quddus M, Adams J, Hoggatt C, Ishiguro T, Nair R 2003 IEEE Trans. Electron Devices 50 1697Google Scholar

    [28]

    Ludikhuize A W 2000 12 th International Symposium on Power Semiconductor Devices and ICs, Toulouse, France May 22–25, 2000 11

  • 图 1  (a) 300 V SOI LDMOS传统结构及线性电流退化机理; (b)本文提出的300 V SOI LDMOS加固结构及线性电流加固机理

    Figure 1.  (a) Conventional structure of 300 V SOI LDMOS and mechanism of linear current degradation under TID effect; (b) proposed rad-hard structure of 300 V SOI LDMOS and linear current hardness mechanism.

    图 2  传统结构中, (a) DPTOP对辐照前后VB, Idlin的影响; (b) DPTOP = $ 5\times {10}^{11} $ cm–2, 辐照前后线性电流密度分布, 其中横坐标表示距PTOP表面的纵向距离

    Figure 2.  In the conventional structure, (a) impact of DPTOP on pre-rad and post-rad VB and Idlin; (b) distribution of pre-rad and post-rad linear current density when DPTOP = $ 5\times {10}^{11} $ cm–2, wherein X axis represents vertical distance to PTOP surface.

    图 3  不同注入能量下PSL掺杂浓度NPSL分布, 横坐标表示距PTOP表面的纵向距离

    Figure 3.  Distribution of PSL doping concentration NPSL under various implantation energy EPSL, wherein X axis represents vertical distance to PTOP surface.

    图 4  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, DPTOP = $ 5\times {10}^{11} $ cm–2条件下, DPSL在不同注入能量下对辐照前后VBIdlin的影响 (a) EPSL = 170 keV; (b) EPSL = 200 keV; (c) EPSL = 230 keV

    Figure 4.  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, DPTOP = $ 5\times {10}^{11} $ cm–2, impact of DPSL on pre-rad and post-rad VB and Idlin for (a) EPSL = 170 keV; (b) EPSL = 200 keV; (c) EPSL = 230 keV.

    图 5  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, 不同DPSL对辐照前后VB, Idlin的影响: (a) DPTOP = $ 5\times {10}^{11} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2; (c) DPTOP = $ 7\times {10}^{11} $ cm–2; (d) DPTOP = $ 8\times {10}^{11} $ cm–2

    Figure 5.  Impact of DPSL on pre-rad and post-rad VB and Idlin for (a) DPTOP = $ 5\times {10}^{11} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2; (c) DPTOP = $ 7\times {10}^{11} $ cm–2; (d) DPTOP = $ 8\times {10}^{11} $ cm–2 when d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV.

    图 6  d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, DPTOP = $ 7\times {10}^{11} $ cm–2, 不同DPSL对应的漂移区硅表面电场分布 (a) 辐照前; (b) 辐照后. 图(a)中内插图标明坐标原点OX方向

    Figure 6.  Silicon surface electric field distribution in drift region under various DPSL for (a) pre-rad and (b) post-rad conditions when d = 8 $ \mathrm{\mu }\mathrm{m} $, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, DPTOP = $ 7\times {10}^{11} $ cm–2. Inset indicates origin of the coordinate and X direction

    图 7  LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, d对辐照前后VBIdlin的影响: (a) DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2

    Figure 7.  Impact of d on pre-rad and post-rad VB and Idlin when LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV for (a) DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2; (b) DPTOP = $ 6\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2.

    图 8  DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2, EPSL = 190 keV, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, (a)不同d值下, 器件的辐照前与辐照后转移特性曲线; (b) d = 2, 4, 6, 8 $ \mathrm{\mu }\mathrm{m} $, 辐照后线性电流密度分布, 其中横坐标表示距PTOP表面的纵向距离

    Figure 8.  DPTOP = $ 5\times {10}^{11} $ cm–2, DPSL = $ 1\times {10}^{13} $ cm–2, EPSL = 190 keV, LPSL = 3 $ \mathrm{\mu }\mathrm{m} $, (a) Pre-rad and post-rad transfer curves under various d; (b) distribution of post-rad linear current density when d = 2, 4, 6, 8 $ \mathrm{\mu }\mathrm{m} $, wherein X axis represents vertical distance to PTOP surface.

    图 9  DPTOP = $ 5\times {10}^{11} $ cm–2, d = 8 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV, 不同LPSL对辐照前后VB, Idlin的影响: (a) DPSL = $ 8\times {10}^{12} $ cm–2; (b) DPSL = $ 9\times {10}^{12} $ cm–2; (c) DPSL = $ 1\times {10}^{13} $ cm–2; (d) DPSL = $ 1.1\times {10}^{13} $ cm–2

    Figure 9.  Impact of LPSL on pre-rad and post-rad VB and Idlin for (a) DPSL = $ 8\times {10}^{12} $ cm–2; (b) DPSL = $ 9\times {10}^{12} $ cm–2; (c) DPSL = $ 1\times {10}^{13} $ cm–2; (d) DPSL = $ 1.1\times {10}^{13} $ cm–2 when DPTOP=$ 5\times {10}^{11} $cm–2, d = 8 $ \mathrm{\mu }\mathrm{m} $, EPSL = 190 keV.

  • [1]

    Winokur P S, Lum G K, Shaneyfelt M R, Sexton F W, Hash G L, Scott L 1999 IEEE Trans. Nucl. Sci. 46 1494Google Scholar

    [2]

    Barth J L, Dyer C S, Stassinopoulos E G 2003 IEEE Trans. Nucl. Sci. 50 466Google Scholar

    [3]

    Pease R L 1996 IEEE Trans. Nucl. Sci. 43 442Google Scholar

    [4]

    Oldham T R, Mclean B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [5]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103Google Scholar

    [6]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar

    [7]

    Titus J L 2013 IEEE Trans. Nucl. Sci. 60 1912Google Scholar

    [8]

    Srour J R, Palko J W 2013 IEEE Trans. Nucl. Sci. 60 1740Google Scholar

    [9]

    Jiang J Z, Shu W, Chong K S, Lin T, Zwa Lwin N K, Chang J S, Liu J Y 2016 IEEE International Symposium on Circuits and Systems Montreal, Canada May 22–25, 2016 p5

    [10]

    Xie X D, Yang Z Z, Deng M X, Chen K B, Li W 2019 IEEE Trans. Device Mater. Reliab. 19 242Google Scholar

    [11]

    范雪, 李威, 李平, 张斌, 谢小东, 王刚, 胡滨, 翟亚红 2012 物理学报 61 016106Google Scholar

    Fan X, Li W, Li P, Zhang B, Xie X D, Wang G, Hu B, Zhai Y H 2012 Acta Phys. Sin. 61 016106Google Scholar

    [12]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747Google Scholar

    [13]

    Hughes H L, Benedetto J M 2003 IEEE Trans. Nucl. Sci. 50 500Google Scholar

    [14]

    刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌 2011 物理学报 60 116103Google Scholar

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011 Acta Phys. Sin. 60 116103Google Scholar

    [15]

    Wu M, Zhang C C, Peng W, Xu J, Jin H, Zeng Y, Chen Z J 2020 IEEE Trans. Nucl. Sci. 67 708Google Scholar

    [16]

    Sorge R, Schmidt J, Reimer F, Wipf C, Korndoerfer F, Pliquett R, Barth R 2019 Nucl. Instr. and Meth. in Phys. Res. 924 166Google Scholar

    [17]

    Ali K B, Gammon P M, Chan C W, Li F, Pathirana V, Trajkovic T, Gity F, Flandre D, Kilchytska V 2017 47 th European Solid State Device Research Conference Leuven, Belgium, September 11–14, 2017 p236

    [18]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H 2009 J. Semicond. 30 014004Google Scholar

    [19]

    Qiao F Y, Pan L Y, Wu D, Liu L F, Xu J 2014 J. Semicond. 35 024003Google Scholar

    [20]

    Liu M X, Han Z S, Bi J S, Fan X M, Liu G, Du H, Song L M 2008 J. Semicond. 29 2158

    [21]

    Li Y F, Zhu S L, Wu J W, Hong G S, Xu Z 2019 J. Semicond. 40 052401Google Scholar

    [22]

    Asano M, Sekigawa D, Hara K, Aoyagi W, Honda S, Tobita N, Arai Y, Miyoshi T, Kurachi I, Tsuboyama T, Yamada M 2016 Nucl. Instr. and Meth. in Phys. Res. 831 315Google Scholar

    [23]

    Schwank J R, Ferlet- Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522Google Scholar

    [24]

    Huang Y, Li B H, Zhao X, Zheng Z S, Gao J T, Zhang G, Li B, Zhang G H, Tang K, Han Z S, Luo J J 2018 IEEE Trans. Nucl. Sci. 65 1532Google Scholar

    [25]

    Yuan Z Y A, Qiao M, Li X J, Hou D C, Zhang S H, Zhou X, Li Z J, Zhang B 2021 IEEE Trans. Electron Devices 68 2064Google Scholar

    [26]

    Huang Y S, Baliga B J 1991 3rd International Symposium on Power Semiconductor Devices and ICs, Baltimore, USA April 22-24, 1991 27

    [27]

    Imam M, Hossain Z, Quddus M, Adams J, Hoggatt C, Ishiguro T, Nair R 2003 IEEE Trans. Electron Devices 50 1697Google Scholar

    [28]

    Ludikhuize A W 2000 12 th International Symposium on Power Semiconductor Devices and ICs, Toulouse, France May 22–25, 2000 11

  • [1] Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Song Hong-Jia, Zhong Xiang-Li, Li Yang-Fan, Bai Ru-Xue, Lu Xiao-Jie, Zhang Feng-Qi. Total X-ray dose effect on graphene field effect transistor. Acta Physica Sinica, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [3] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [4] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [5] Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian. Statistical characteristics of total ionizing dose effects of bipolar transistors. Acta Physica Sinica, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [6] Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao. Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell. Acta Physica Sinica, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [7] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [8] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [9] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [10] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [11] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [12] Zhuo Qing-Qing, Liu Hong-Xia, Wang Zhi. Single event effect of 3D H-gate SOI NMOS devices in total dose ionizing. Acta Physica Sinica, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [13] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [14] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [15] Zhou Xin-Jie, Li Lei-Lei, Zhou Yi, Luo Jing, Yu Zong-Guang. Back-gate bias effect on partially depleted SOI/MOS back-gate performances under radiation condition. Acta Physica Sinica, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [16] Li Ming, Yu Xue-Feng, Xue Yao-Guo, Lu Jian, Cui Jiang-Wei, Gao Bo. Research on the total dose irradiation effect of partial-depletion-silicon-on insulator static random access memory. Acta Physica Sinica, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [17] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [18] Wang Yi-Yuan, Lu Wu, Ren Di-Yuan, Guo Qi, Yu Xue-Feng, He Cheng-Fa, Gao Bo. Degradation and dose rate effects of bipolar linearregulator on ionizing radiation. Acta Physica Sinica, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [19] Wang Si-Hao, Lu Qing, Wang Wen-Hua, An Xia, Huang Ru. The improvement on total ionizing dose (TID) effects of the ultra-deep submicron MOSFET featuring delta doping profiles. Acta Physica Sinica, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [20] He Chao-Hui, Geng Bin, He Bao-Ping, Yao Yu-Juan, Li Yong-Hong, Peng Hong-Lun, Lin Dong-Sheng, Zhou Hui, Chen Yu-Sheng. Test methods of total dose effects in verylarge scale integrated circuits. Acta Physica Sinica, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
Metrics
  • Abstract views:  4283
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2022
  • Accepted Date:  29 January 2022
  • Available Online:  16 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回