-
In this paper, the rare earth element praseodymium-doped indium tin zinc oxide semiconductor is used as the channel layer of the thin film transistor, and the aluminum oxide-based wet back channel etched thin film transistor is successfully prepared. The effect of N 2O plasma treatment on the back-channel interface of thin film transistor is studied, and the effect of treatment power and time on device performance are studied in detail. The results show that the good device performance can be obtained under certain power and time treatment, and the prepared device has good thermal stability of positive bias and negative bias under light conditions. The results from high-resolution transmission electron microscopy show that the amorphous structure of the metal oxide semiconductor material can effectively resist the wet etchant, and that no obvious component segregation phenomenon is found. Further, X-ray photoelectric spectroscopy tests show that N 2O plasma treatment can form an oxygen-rich, low-carrier-concentration interface layer at the interface. On the one hand, it can effectively resist the damage of the back channel caused by the plasma of plasma enhanced chemical vapor deposition (PECVD), and on the other hand, it acts as a passivation body of hydrogen from PECVD plasma, suppressing the generation of low-level donor state of hydrogen. This study provides an important reference for low-cost, high-efficiency thin film transistor performance optimization methods.
-
Keywords:
- metal oxide semiconductor /
- back channel etch /
- thin film transistor /
- N 2O plasma
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar
[2] Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733Google Scholar
[3] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 物理学报 62 108503Google Scholar
Li X F, Xin E L, Shi J F, Chen L L, Zhang C Y, ZhangJ H 2013 Acta Phys. Sin. 62 108503Google Scholar
[4] Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonçalves A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590Google Scholar
[5] Chung C Y, Zhu B, Greene R G, Thompson M O, Ast D G 2015 Appl. Phys. Lett. 107 183503Google Scholar
[6] Song J I, Park J S, Kim H, Heo Y W, Kim G M, Choi B D 2007 Appl. Phys. Lett. 90 022106Google Scholar
[7] Lan L F, Xiong N N, Xiao P, Li M, Xu H, Yao R H, Wen S S, Peng J B 2013 Appl. Phys. Lett. 102 242102Google Scholar
[8] Xu H, Xu M, Li M, Chen Z K, Zou J H, Wu W, Qiao X, Tao H, Wang L, Ning H L, Ma D G, Peng J B 2019 ACS Appl. Mater. Interfaces 11 5232Google Scholar
[9] Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J, Jeong J K, Mo Y, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar
[10] Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar
[11] Park J, Song I, Kim S, Kim S, Kim C, Lee J, Lee H, Lee E, Yin H, Kim K, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053501Google Scholar
[12] Xu H, Lan L F, Xu M, Zou J H, Wang L, Wang D, Peng J B 2011 Appl. Phys. Lett. 99 253501Google Scholar
[13] Ge S M, Li S, Chen S J, Kong X Y, Meng Y H, Shi W, Shi L, Wu W, Liu X, Gan Q, Zhao Y, Zhang C, Chiu C, Lee C Y 2017 SID Symposium Digest of Technical Papers 48 592Google Scholar
[14] Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar
[15] Tsai C T, Chang T C, Chen S C, Lo I, Tsao S W, Hung M C, Chang J J, Wu C Y, Huang C Y 2010 Appl. Phys. Lett. 96 242105Google Scholar
[16] Park J C, Ahn S E, Lee H N 2013 ACS Appl. Mater. Interfaces 5 12262Google Scholar
[17] Sheng J, Park J, Choi D W, Lim J, Park J S 2016 ACS Appl. Mater. Interfaces 8 31136Google Scholar
[18] Nahm H H, Kim Y S, Kim D H 2012 Phys. Status Solidi B 249 1277Google Scholar
[19] Zhu Y B, Xu H, Xu M, Li M, Zou J H, Tao H, Wang L, Peng J B 2021 Phys. Status Solidi A doi: 10.1002/pssa.202000812
[20] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪 2021 物理学报 70 168501Google Scholar
Zhu Y B, Xu H, Li M, Xu M, Peng J B 2021 Acta Phys. Sin. 70 168501Google Scholar
[21] Fortunato E, Barquinha P, Martins R 2012 Adv. Mater. 24 2945Google Scholar
[22] Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar
[23] Remashan K, Hwang D K, Park S D, Bae J W, Yeom G Y, Park S J, Jang J H 2007 Electrochem. Solid State Lett. 11 H55
[24] Kang Y, Ahn B D, Song J H, Mo Y G, Nahm H H, Han S, Jeong J K 2015 Adv. Electron. Mater. 1 1400006Google Scholar
[25] Son K S, Kim T S, Jung J S, Ryu M K, Park K B, Yoo B W, Park K C, Kwon J Y, Lee S Y, Kim J M 2008 Electrochem. Solid State Lett. 12 H26
-
图 2 (a)不同功率和 (b) 不同时间的N 2O处理对器件转移特性的影响; Device C (c) 不同源漏电压下的转移特性曲线和 (d) 输出特性曲线
Figure 2. Influence of different (a) power and (b) time treatment of N 2O on the transfer characteristics of the device; (c) transfer characteristic curve under different source and drain voltages and (d) output characteristic curve of Device C.
图 6 PITZO薄膜在 (a) 无N 2O处理和 (b) N 2O处理后O 1s的XPS谱图随刻蚀时间的关系; Ar离子枪刻蚀前 (c) 无N 2O处理和 (d) N 2O处理后薄膜O 1s的拟合XPS图谱
Figure 6. The O 1s XPS spectra of the PITZO films (a) without N 2O and (b) with N 2O treatment related with the Ar ion gun etching time. Fitted O 1s XPS of the PITZO thin films (c) without N 2O and (d) with N 2O treatment before Ar ion gun etching.
表 1 各器件性能参数表
Table 1. Electronic parameters of each TFTs.
No. V th/V μ sat/(cm 2·V –1·s –1) SS/(V·decade –1) I on- I off Device A — — — — Device B — — — — Device C 0.7 22.4 0.17 10 8 Device D — — — — Device E 0.4 20.6 0.22 10 8 -
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar
[2] Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733Google Scholar
[3] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 物理学报 62 108503Google Scholar
Li X F, Xin E L, Shi J F, Chen L L, Zhang C Y, ZhangJ H 2013 Acta Phys. Sin. 62 108503Google Scholar
[4] Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonçalves A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590Google Scholar
[5] Chung C Y, Zhu B, Greene R G, Thompson M O, Ast D G 2015 Appl. Phys. Lett. 107 183503Google Scholar
[6] Song J I, Park J S, Kim H, Heo Y W, Kim G M, Choi B D 2007 Appl. Phys. Lett. 90 022106Google Scholar
[7] Lan L F, Xiong N N, Xiao P, Li M, Xu H, Yao R H, Wen S S, Peng J B 2013 Appl. Phys. Lett. 102 242102Google Scholar
[8] Xu H, Xu M, Li M, Chen Z K, Zou J H, Wu W, Qiao X, Tao H, Wang L, Ning H L, Ma D G, Peng J B 2019 ACS Appl. Mater. Interfaces 11 5232Google Scholar
[9] Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J, Jeong J K, Mo Y, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar
[10] Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar
[11] Park J, Song I, Kim S, Kim S, Kim C, Lee J, Lee H, Lee E, Yin H, Kim K, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053501Google Scholar
[12] Xu H, Lan L F, Xu M, Zou J H, Wang L, Wang D, Peng J B 2011 Appl. Phys. Lett. 99 253501Google Scholar
[13] Ge S M, Li S, Chen S J, Kong X Y, Meng Y H, Shi W, Shi L, Wu W, Liu X, Gan Q, Zhao Y, Zhang C, Chiu C, Lee C Y 2017 SID Symposium Digest of Technical Papers 48 592Google Scholar
[14] Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar
[15] Tsai C T, Chang T C, Chen S C, Lo I, Tsao S W, Hung M C, Chang J J, Wu C Y, Huang C Y 2010 Appl. Phys. Lett. 96 242105Google Scholar
[16] Park J C, Ahn S E, Lee H N 2013 ACS Appl. Mater. Interfaces 5 12262Google Scholar
[17] Sheng J, Park J, Choi D W, Lim J, Park J S 2016 ACS Appl. Mater. Interfaces 8 31136Google Scholar
[18] Nahm H H, Kim Y S, Kim D H 2012 Phys. Status Solidi B 249 1277Google Scholar
[19] Zhu Y B, Xu H, Xu M, Li M, Zou J H, Tao H, Wang L, Peng J B 2021 Phys. Status Solidi A doi: 10.1002/pssa.202000812
[20] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪 2021 物理学报 70 168501Google Scholar
Zhu Y B, Xu H, Li M, Xu M, Peng J B 2021 Acta Phys. Sin. 70 168501Google Scholar
[21] Fortunato E, Barquinha P, Martins R 2012 Adv. Mater. 24 2945Google Scholar
[22] Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar
[23] Remashan K, Hwang D K, Park S D, Bae J W, Yeom G Y, Park S J, Jang J H 2007 Electrochem. Solid State Lett. 11 H55
[24] Kang Y, Ahn B D, Song J H, Mo Y G, Nahm H H, Han S, Jeong J K 2015 Adv. Electron. Mater. 1 1400006Google Scholar
[25] Son K S, Kim T S, Jung J S, Ryu M K, Park K B, Yoo B W, Park K C, Kwon J Y, Lee S Y, Kim J M 2008 Electrochem. Solid State Lett. 12 H26
Catalog
Metrics
- Abstract views: 4959
- PDF Downloads: 95
- Cited By: 0