Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Infrared broadband photoresponse characteristics of nanoporous NbN film

Zhao Yu-Chen Zheng Jia-Huan Wang Yong Xi Xiao-Li Song Hai-Zhi

Citation:

Infrared broadband photoresponse characteristics of nanoporous NbN film

Zhao Yu-Chen, Zheng Jia-Huan, Wang Yong, Xi Xiao-Li, Song Hai-Zhi
cstr: 32037.14.aps.71.20211694
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nanoporous superconducting films with superconductor-insulator transition characteristics have potential application in the field of infrared photoelectric detection, but their broadband optical response characteristics in infrared band have not been reported. Therefore, taking nanoporous niobium nitride (NbN) films as the main object, the optical response characteristics in the near and medium infrared wavelength range of 780–5000 nm are studied in this paper. Firstly, the Drude-model fitting accuracy of measured NbN permittivity is improved by about 17%, and the NbN optical parameters in mid-infrared band are obtained. Furthermore, the optical response characteristics of the back-illuminated device with nanoporous NbN film are analyzed by finite difference time domain method, and a Bruggeman equivalent model which can simplify the nanoporous film into a uniform film is given, thereby reducing the three-dimensional simulation of nanoporous NbN film into one dimensional simulation. Finally, based on the equivalent model and the transfer matrix method, the light absorption characteristics of the back-illuminated device in near-/mid-infrared wavelength ranges are optimized. The results indicate that, on the one hand, simplifying the design process by using Bruggeman equivalent model will not affect the correctness of the final optimization results, and, on the other hand, a relatively simple optical cavity can make the detector achieve polarization-independent film absorption greater than 82% for near-/mid-infrared broadband design and 93.7% for double-wavelength design.
      Corresponding author: Wang Yong, ywang@uestc.edu.cn ; Xi Xiao-Li, xixiaoli@xaut.edu.cn ; Song Hai-Zhi, hzsong1296@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61971346) and the Science Foundation of Xi’an University of Technology, China (Grant Nos. 103-451319009, 103-451420002).
    [1]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [2]

    Lovell D 1969 Am. J. Phys. 37 467Google Scholar

    [3]

    Lawson W, Nielsen S, Putley E, Young A 1959 J. Phys. Chem. Solids 9 325Google Scholar

    [4]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [5]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [7]

    Yang L, Jacob Z 2019 Opt. Express 27 10482Google Scholar

    [8]

    Yang L, Jacob Z 2019 J. Appl. Phys. 126 174502Google Scholar

    [9]

    Yang L, Jacob Z 2020 NPJ Quantum Inf. 6 76Google Scholar

    [10]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar

    [11]

    李岚 2018 硕士学位论文 (成都: 电子科技大学)

    Li L 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [12]

    Kapitulnik A, Kivelson B, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar

    [13]

    Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang Jian, Li Y R 2019 Science 366 1505Google Scholar

    [14]

    Chen Z Y, Wang B Y, Swartz A G, Yoon H. Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 1Google Scholar

    [15]

    Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar

    [16]

    吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨 2018 物理学报 67 248501Google Scholar

    Wu Y, Chen Q, Xu R Y, Ge R, Zhang B, Tao X, Tu X C, Jia X Q, Zhang L B, Kang L, Wu P H 2018 Acta Phys. Sin. 67 248501Google Scholar

    [17]

    Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8Google Scholar

    [18]

    Hu X L, Cheng Y H, Gu C, Zhu X T, Liu H Y 2015 Sci. Bull. 60 1980Google Scholar

    [19]

    Sunter K A, Berggren K K 2018 Appl. Opt. 57 4872Google Scholar

    [20]

    Zheng F, Xu R Y, Chen Y J, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 IEEE Photonics J. 9 4502108Google Scholar

    [21]

    吴洋 2019 硕士学位论文 (南京: 南京大学)

    Wu Y 2018 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)

    [22]

    Hu X L 2011 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [23]

    Hu X L, Marsili F, Najafi F, Berggren K K 2010 Proceedings of Quantum Electronics and Laser Science Conference San Jose, USA, May 16–21, 2010 pQThD5

    [24]

    Khardani M, Bouaїcha M, Bessaїs B 2007 Phys. Status Solidi C 4 1986Google Scholar

    [25]

    Stephens R E, Malitson I H 1952 J. Res. Nat. Bur. Stand. 49 249Google Scholar

  • 图 1  纳米多孔NbN薄膜结构示意图

    Figure 1.  NbN film with nanoporous structure.

    图 2  使用Drude模型拟合NbN复介电常数的结果

    Figure 2.  Fit of the measured results of complex dielectric constant of NbN using Drude model.

    图 3  NbN薄膜光响应特性仿真 (a)仿真模型示意图; (b)反射; (c)透射; (d)吸收

    Figure 3.  Simulation of optical response characteristics of NbN film: (a) Simulation model sketch; (b) reflection; (c) transmission; (d) absorption.

    图 4  等效模型的效果分析 (a) 不同形状参数d的吸收率误差; (b) 反射(d = 3); (c) 透射(d = 3); (d) 吸收(d = 3)

    Figure 4.  Effect analysis of equivalent model: (a) Error; (b) reflection (d = 3); (c) transmission (d = 3); (d) absorption (d = 3).

    图 5  NbN薄膜的趋肤深度

    Figure 5.  Skin depth of NbN film.

    图 6  背面对光器件结构优化 (a) 待优化模型; (b) 中红外宽带; (c) 近红外宽带; (d) 近红外双波长

    Figure 6.  Devices structure optimization of incident light: (a) Device model; (b) broadband in mid-infrared; (c) broadband in near-infrared; (d) dual-wavelength in near-infrared.

  • [1]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [2]

    Lovell D 1969 Am. J. Phys. 37 467Google Scholar

    [3]

    Lawson W, Nielsen S, Putley E, Young A 1959 J. Phys. Chem. Solids 9 325Google Scholar

    [4]

    Esaki L, Tsu R 1970 IBM J. Res. Dev. 14 61Google Scholar

    [5]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [7]

    Yang L, Jacob Z 2019 Opt. Express 27 10482Google Scholar

    [8]

    Yang L, Jacob Z 2019 J. Appl. Phys. 126 174502Google Scholar

    [9]

    Yang L, Jacob Z 2020 NPJ Quantum Inf. 6 76Google Scholar

    [10]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar

    [11]

    李岚 2018 硕士学位论文 (成都: 电子科技大学)

    Li L 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [12]

    Kapitulnik A, Kivelson B, Spivak B 2019 Rev. Mod. Phys. 91 011002Google Scholar

    [13]

    Yang C, Liu Y, Wang Y, Feng L, He Q M, Sun J, Tang Y, Wu C C, Xiong J, Zhang W L, Lin X, Yao H, Liu H W, Fernandes G, Xu J, Valles J M, Wang Jian, Li Y R 2019 Science 366 1505Google Scholar

    [14]

    Chen Z Y, Wang B Y, Swartz A G, Yoon H. Hikita Y, Raghu S, Hwang H Y 2021 npj Quantum Mater. 6 1Google Scholar

    [15]

    Chen Z, Liu Y, Zhang H, Liu Z R, Tian H, Sun Y Q, Zhang M, Zhou Y, Sun J R, Xie Y W 2021 Science 372 721Google Scholar

    [16]

    吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨 2018 物理学报 67 248501Google Scholar

    Wu Y, Chen Q, Xu R Y, Ge R, Zhang B, Tao X, Tu X C, Jia X Q, Zhang L B, Kang L, Wu P H 2018 Acta Phys. Sin. 67 248501Google Scholar

    [17]

    Echtermeyer T, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8Google Scholar

    [18]

    Hu X L, Cheng Y H, Gu C, Zhu X T, Liu H Y 2015 Sci. Bull. 60 1980Google Scholar

    [19]

    Sunter K A, Berggren K K 2018 Appl. Opt. 57 4872Google Scholar

    [20]

    Zheng F, Xu R Y, Chen Y J, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 IEEE Photonics J. 9 4502108Google Scholar

    [21]

    吴洋 2019 硕士学位论文 (南京: 南京大学)

    Wu Y 2018 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)

    [22]

    Hu X L 2011 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [23]

    Hu X L, Marsili F, Najafi F, Berggren K K 2010 Proceedings of Quantum Electronics and Laser Science Conference San Jose, USA, May 16–21, 2010 pQThD5

    [24]

    Khardani M, Bouaїcha M, Bessaїs B 2007 Phys. Status Solidi C 4 1986Google Scholar

    [25]

    Stephens R E, Malitson I H 1952 J. Res. Nat. Bur. Stand. 49 249Google Scholar

Metrics
  • Abstract views:  6158
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2021
  • Accepted Date:  25 October 2021
  • Available Online:  28 February 2022
  • Published Online:  05 March 2022
  • /

    返回文章
    返回