-
Silver is a very common material in archaeology, and its neutron total cross-section is crucial for Neutron Resonance Transmission Analysis (NRTA) in archaeometry. In this work, the neutron total cross sections of natural silver (natAg) in the resonance region from 10 to 100 eV were measured at the China Spallation Neutron Source (CSNS) back-streaming neutron facility (Back-n). The neutron transmission rate of a 0.3 mm natAg sample was measured with a fission chamber equipped with 235U neutron converters. The neutron total cross-sections around resonance peaks at 16.25 eV, 30.35 eV, 40.15 eV, 41.35 eV, 44.6 eV, 51.25 eV, 55.45 eV, 70.75 eV, 87.3 eV were obtained. The cross-sections measured in this work are generally higher than previous measurements by G. Kim et al. and F. G. P. Seidl et al. These significant discrepancies are probably due to the resolution function of the facility, which is very sensitive to the resonance peaks.
The resonance parameters—the peak position of the resonances (Eres) and the neutron width (Γn)—of 107Ag and 109Ag were extracted by fitting the transmission rate based on R-matrix theory. The extracted parameters Eres and Γn are generally in good agreement with ENDF/B-VIII.0 and CENDL-3.2 evaluations, except that the neutron width at 16.33 eV is significantly lower than that in the evaluations. The resolution function of the facility is considered to be the main reason of the inaccuracy. More accurate resonance parameters could be extracted in the future when a better control of the resolution function is achieved.
This work provides new cross-section data that supports the research and development of NRTA technique at CSNS Back-n facility and contributes to the experimental dataset for the neutron total cross-section of natural silver. The dataset of this paper is available at https://www.scidb.cn/s/mu2Mjq.-
Keywords:
- neutron total cross section /
- natural silver /
- China spallation neutron source /
- Back-n facility
-
[1] Tuo X G, Liu F L, Wang Q B, Deng C, Shi R, Mu K L, Niu J 2020 J. Nucl. Tech. 43.100201 (in Chinese) [庹先国,刘福乐,王琦标,邓超,石睿,穆克亮,牛江 2020 核技术 43 100201]
[2] Hecla J J, Danagoulian A 2018 Nat. Commun. 9 1259
[3] Engel E M, Danagoulian A 2019 Nat. Commun 10 4433
[4] Behrens J W, Johnson R G, Schrack R A 2017 Nucl. Tech 67 1984
[5] Paradela C, Heyse J, Kopecky S, Schillebeeckx P, Harada H, Kitatani F, Koizumi M, Tsuchiya H 2017 EPJ Web Conf 146 09002
[6] Nelson R O, Vogel S C, Hunter J F, Watkins E B, Losko A S, Tremsin A S, Borges N P, Cutler T E, Dickman L T, Espy M A, Gautier D C, Madden A C, Majewski J, Malone M W, Mayo D R, McClellan K J, Montgomery D S, Mosby S M, Nelson A T, Ramos K J, Schirato R C, Schroeder K, Sevanto S A, Swift A L, Vo L K, Williamson T E, Winch N M 2018 J. Imaging 4 45
[7] Cippo E P, Borella A, Gorini G, Kockelmann W, Moxon M, Postma H, Rhodes N J, Schillebeeckx P, Schoonenveld E M, Tardocchi M, Dusz K, Hajnal Z, Biro K, Porcinai S, Andreanii C, Festa G 2011 J.Anal.At.Spectrum 26 992
[8] Festa G, Cippo E P, Martino D D, Cattaneo R, Senesi R, Andreani C, Schooneveld E, Kockelmann W, Rhodes N, Scherillo A, Kudejova P, Biro K, Duzs K, Hajnal Z, Gorini G 2015 J. Anal. At. Spectrum 30 3
[9] Tang S D, Chen Y H, Tang J Y, et al. 2024 Nucl. Sci. Tech 35 17
[10] An Q, Bai H F, Bao J, et al. 2017 JINST 12 07022
[11] Zhang L Y, Jing H T, Tang J Y, Li Q, Ruan X C, Ren J, Ning C J, Yu Y J, Tan Z X, Wang P C, He Y C, Wang X Q 2017 Appl. Radiat. Isot 132 212
[12] Jing H T, Tang J Y, Tang H Q, Xia H H, Liang T J, Zhou Z Y, Zhong Q P, Ruan X C 2010 Nucl. Instr. Meth. A 621 91
[13] Yang Y W, Wen Z W, Han Z J, et al. 2019 Nucl. Instr. Meth. A 940 486
[14] Wang S, Fang S X, Fu S N, Liu W B, Ouyang H F, Qin Q, Tang J Y, Wei J 2009 Chin. Phys. C 33 1
[15] Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101(in Chinese)[鲍杰、陈永浩、张显鹏等2019 物理学报 68 080101]
[16] Chen Y H, Luan G Y, Bao J, et al. 2019 Eur. Phys. J. A 55 115
[17] Chen Y H, Luan G Y, Bao J, et al. 2020 EPJ Web Conf. 239 17018
[18] Chen Y H, Qiu Y J, Li Q, et al. 2024 Eur. Phys. J. A 60 63
[19] Qiu Y J, Chen Y H, Li Q, Wang J C, Ren J, Tang S D, Fan R R, Yi H, Tang J Y, Ning C J, Jiang W, Li Y, Jing H T, Tan Z X 2025 Nucl. Instr. Meth. A 1075 170383
[20] Yu T, Cao P, Ji X Y, et al. 2019 IEEE Trans.Nucl. Sci 66 7
[21] Wang Q, Cao P, Qi X, Yu T, Ji X, Xie L, An Q 2018 Rev.Sci.Instrum 89 013511
[22] Qi B B, Li Y, Zhu D Y, et al. 2020 Nucl. Instr. Meth.A 957 163407
[23] Yi H, Wang T F, Li Y, et al. 2020 JINST 15 3
[24] Schillebeeckx P, Becker B, Danon Y, Guber K, Harada H, Heyse J, Junghans A R, Kopecky S, Massimi C, Moxon M C, Otuka N, Sirakov I, Volev K 2012 Nucl. Data Sheets 113 3054
[25] Kim G, Meaze A.K.M.M.H, Ahmed H, Son D, Lee Y S, Kang H, Cho M, Ko I S, Namkung W, Ro T, Chung W, Kim Y A, Yoo K J, Chang J H 2004 AIP conf. Proc. 769 740
[26] Seidl F G P, Hughes D J, Palevsky H, Levin J S, Kato W Y, Sjostrand N G 1954 Phys. Rev. 95 476
[27] Jiang B, Han J L, Jiang W, Hu J F, Wang X H, Chen J G, Cai X Z 2021 Nucl. Instr. Meth.A 1013 165677
[28] Li X X,Liu L X,Jiang W, et al. 2022 Chin. Phys. B 31 038204
Metrics
- Abstract views: 8
- PDF Downloads: 0
- Cited By: 0









下载: