Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multimodal imaging of muon based on scattering and secondary induced neutrons

Yan Jiang-Yu Zhang Quan-Hu Huo Yong-Gang

Citation:

Multimodal imaging of muon based on scattering and secondary induced neutrons

Yan Jiang-Yu, Zhang Quan-Hu, Huo Yong-Gang
PDF
HTML
Get Citation
  • Muon scattering imaging technology can be used to detect nuclear material and is of considerable significance in nuclear safety. However, it is difficult to distinguish special nuclear materials from high-Z objects effectively by using the existing muon scattering imaging technologies. Muon-induced neutrons emitted from special nuclear materials can help to identify the existence of special nuclear materials. However, this method has long imaging time and low imaging quality. Multimodal imaging of muon uses both the information about scattering muons penetrating the material and the information about muons stopped by material and generating secondary induced neutrons, which can overcome the shortcomings of single imaging method effectively. The detection model is set up based on Geant4. The simulation programs of muon imaging in coincidence with muon induced neutrons, scattering imaging of muon, and multimodal imaging of muon are developed by using Cosmic-ray Shower Library as particle source, and the imaging algorithms are implemented respectively on the basis of the simulated data. Two imaging models are designed for muon scattering imaging. The first one is a single 235U cube, and the second one is composed of four cubes, namely 235U cube, 239Pu cube, lead cube and aluminum cube. This simulation has completed muon scattering imaging of single cube and four cubes. In the part of muon imaging in coincidence with muon induced neutrons, the neutronic gain of the HEU (90% 235U) plate, LEU (20% 235U) plate, and DU (0.2% 235U) plate, as well as the relationship between the neutronic gain of these three uranium plates and the energy and charged properties of the muon are obtained by simulation, and then two imaging models are set up. The first one is composed of four cubes, namely 235U cube, 239Pu cube, lead cube, and aluminum cube, and the other is comprised of multilayer nuclear components. The 2D and 3D reconstruction results of multi-objects and multilayer nuclear components are obtained through muon imaging in coincidence with muon induced neutrons. Then the multimodal imaging of muon for three cubes is realized in the presence or absence of iron shielding shell. The imaging capabilities are compared with the muon scattering imaging capacities and muon imaging capacities in coincidence with muon induced neutrons. Simulation studies indicate that multimodal imaging of muon based on scattering and secondary induced neutrons can effectively combine the advantages of every single imaging method. The multimodal imaging of muon can take advantage of available information more efficiently, which is helpful in improving the imaging quality. Multimodal imaging of muon not only has the advantages of short imaging time and high imaging quality, but also can distinguish special nuclear material from other high-Z materials clearly, which is vital for detecting special nuclear materials.
      Corresponding author: Huo Yong-Gang, huoarmy@163.com
    [1]

    Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar

    [2]

    罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar

    Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar

    [3]

    于百蕙 2016 博士学位论文 (北京: 清华大学)

    Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [4]

    何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)

    He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [5]

    Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar

    [6]

    Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar

    [7]

    Bonechi L, Alessandro R D, Giammanco A 2020 Rev. Phys. 5 100038Google Scholar

    [8]

    Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar

    [9]

    Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar

    [10]

    Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024Google Scholar

    [11]

    智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar

    Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar

    [12]

    Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277Google Scholar

    [13]

    何伟波, 肖洒, 帅茂兵, 赖新春, 安琪 2016 核电子学与探测技术 36 297Google Scholar

    He W B, Xiao S, Shuai M B, Lai X C, An Q 2016 Nucl. Electron. Detect. Technol. 36 297Google Scholar

    [14]

    Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos: Los Alamos National Lab, LA-UR-13-28292 [R])

    [15]

    Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius II J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109

    [16]

    Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A New Method of Passive Counting of Nuclear Missile Warheads-a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])

    [17]

    Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006

    [18]

    Hagmann C, Lange D, Verbeke J, Wright D http://nuclear.llnl.gov/simulation/ [2021-4-13]

    [19]

    Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar

    [20]

    罗志飞 2016 博士学位论文(北京: 清华大学)

    Luo Z F 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [21]

    Wheeler, John A 1949 Rev. Mod. Phys. 21 133

    [22]

    Oberacker V E, Umar A S, Wells J C, Bottcher C, Strayer M R, Maruhn J A 1993 Phys. Rev. C 48 1297Google Scholar

    [23]

    Gorringe T P, Hertzog D W 2015 Prog. Part. Nucl. Phys. 84 73Google Scholar

    [24]

    谢仲生, 尹邦华 1996 核反应堆物理分析(下册) (北京: 原子能出版社) 第11页

    Xie Z S, Yin B H 1996 Nuclear Reactor Physical Analysis (Vol. 2) (Beijing: Atomic Energy Press) p11 (in Chinese)

    [25]

    Brandt L J 2015 Ph. D. Dissertation (Ohio: Air University)

    [26]

    Fetter S, Valery A F, Miller M, Mozley R, Prilutsky O F, Rodionov S N, Sagdeev R Z 1990 Sci. Global Secur. 1 225Google Scholar

    [27]

    Fetter S, Valery A F, Oleg F, Prilutsky O F, Sagdeev R Z 1990 Sci. Global Secur. 1 255Google Scholar

    [28]

    Hippel F V, Sagdeev R Z, Hafemeister D W 1991 Phys. Today 44 102Google Scholar

  • 图 1  探测模型设置

    Figure 1.  Detecting model setting.

    图 2  诱发中子符合的缪子成像图解(蓝色轨迹为被次级中子标记的入射缪子轨迹)

    Figure 2.  Diagram of muon imaging in coincidence with muon induced neutrons (the blue trajectories are the incident muon trajectories tagged by muon induced neutrons).

    图 3  散射成像模型 (a) 单物块模型; (b) 四物块模型

    Figure 3.  Scattering imaging model: (a) Single cube model; (b) four cubes model.

    图 4  单物块模型散射成像结果

    Figure 4.  Scattering imaging results of a single cube model.

    图 5  四物块模型散射成像结果

    Figure 5.  Scattering imaging results of four cubes model.

    图 6  中子增益模拟图 (a) CRY缪子源; (b) GPS缪子源

    Figure 6.  Neutron gain simulation diagram: (a) Simulation with CRY; (b) simulation with GPS.

    图 7  中子增益结果

    Figure 7.  Result of neutronic gain.

    图 8  诱发中子符合的缪子成像模型 (a) 核部件具体结构图; (b) 核部件建模示意图

    Figure 8.  Imaging model of muon imaging in coincidence with muon induced neutrons: (a) Detailed structure diagram of nuclear components; (b) nuclear components model.

    图 9  四物块模型的诱发中子符合的缪子成像图 (a) 四物块模型二维成像结果; (b) 四物块模型三维成像结果

    Figure 9.  Muon imaging in coincidence with muon induced neutrons of four cubes model: (a) 2D imaging results of four cubes model; (b) 3D imaging results of four cubes model.

    图 10  核部件模型的诱发中子符合的缪子成像图 (a) 核部件模型二维成像结果; (b) 核部件模型三维成像结果

    Figure 10.  Muon imaging in coincidence with muon induced neutrons of nuclear components: (a) 2D imaging results of nuclear components; (b) 3D imaging results of nuclear components.

    图 11  缪子多模态成像模型 (a) 三物块成像模型; (b) 铁外壳屏蔽的三物块成像模型

    Figure 11.  Imaging model of multimodal imaging of muon: (a) Three cubes model; (b) three cubes model with iron shielding shell.

    图 12  三物块成像结果 (a) 缪子散射成像; (b) 诱发中子符合的缪子成像; (c) 缪子多模态成像

    Figure 12.  Imaging results of three cubes model: (a) Muon scattering imaging; (b) muon imaging in coincidence with muon induced neutrons; (c) multimodal imaging of muon.

    图 13  铁屏蔽下三物块成像结果 (a) 缪子散射成像; (b) 诱发中子符合的缪子成像; (c) 缪子多模态成像

    Figure 13.  Imaging results of three cubes model with iron shielding shell: (a) Muon scattering imaging; (b) muon imaging in coincidence with muon induced neutrons; (c) multimodal imaging of muon

  • [1]

    Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar

    [2]

    罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar

    Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar

    [3]

    于百蕙 2016 博士学位论文 (北京: 清华大学)

    Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [4]

    何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)

    He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [5]

    Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar

    [6]

    Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar

    [7]

    Bonechi L, Alessandro R D, Giammanco A 2020 Rev. Phys. 5 100038Google Scholar

    [8]

    Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar

    [9]

    Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar

    [10]

    Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024Google Scholar

    [11]

    智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar

    Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar

    [12]

    Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277Google Scholar

    [13]

    何伟波, 肖洒, 帅茂兵, 赖新春, 安琪 2016 核电子学与探测技术 36 297Google Scholar

    He W B, Xiao S, Shuai M B, Lai X C, An Q 2016 Nucl. Electron. Detect. Technol. 36 297Google Scholar

    [14]

    Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos: Los Alamos National Lab, LA-UR-13-28292 [R])

    [15]

    Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius II J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109

    [16]

    Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A New Method of Passive Counting of Nuclear Missile Warheads-a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])

    [17]

    Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006

    [18]

    Hagmann C, Lange D, Verbeke J, Wright D http://nuclear.llnl.gov/simulation/ [2021-4-13]

    [19]

    Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar

    [20]

    罗志飞 2016 博士学位论文(北京: 清华大学)

    Luo Z F 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [21]

    Wheeler, John A 1949 Rev. Mod. Phys. 21 133

    [22]

    Oberacker V E, Umar A S, Wells J C, Bottcher C, Strayer M R, Maruhn J A 1993 Phys. Rev. C 48 1297Google Scholar

    [23]

    Gorringe T P, Hertzog D W 2015 Prog. Part. Nucl. Phys. 84 73Google Scholar

    [24]

    谢仲生, 尹邦华 1996 核反应堆物理分析(下册) (北京: 原子能出版社) 第11页

    Xie Z S, Yin B H 1996 Nuclear Reactor Physical Analysis (Vol. 2) (Beijing: Atomic Energy Press) p11 (in Chinese)

    [25]

    Brandt L J 2015 Ph. D. Dissertation (Ohio: Air University)

    [26]

    Fetter S, Valery A F, Miller M, Mozley R, Prilutsky O F, Rodionov S N, Sagdeev R Z 1990 Sci. Global Secur. 1 225Google Scholar

    [27]

    Fetter S, Valery A F, Oleg F, Prilutsky O F, Sagdeev R Z 1990 Sci. Global Secur. 1 255Google Scholar

    [28]

    Hippel F V, Sagdeev R Z, Hafemeister D W 1991 Phys. Today 44 102Google Scholar

  • [1] Wang Ying, Shu Lei. μSR experimental progress and trends of developing muon facilities. Acta Physica Sinica, 2024, 73(19): 197601. doi: 10.7498/aps.73.20240940
    [2] Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu. Muon spectrometers on China Spallation Neutron Source and its application prospects. Acta Physica Sinica, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [3] Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun. Polarization multiplexing scattering imaging. Acta Physica Sinica, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [4] Li Yu-Peng, Tang Xiu-Zhang, Chen Xin-Nan, Gao Chun-Yu, Chen Yan-Nan, Fan Cheng-Jun, Lü Jian-You. Experimental study on material discrimination based on muon discrete energy. Acta Physica Sinica, 2023, 72(2): 029501. doi: 10.7498/aps.72.20221645
    [5] Zhang Jian-Ming, Li Zhi-Wei, Liu Fang, Li Jing-Tai, Mao Xin, Cheng Ya-Ping, Pang Jie, Feng Xin-Zhuo, Ni Si-Dao, Ouyang Xiao-Ping, Han Ran. Influence of multiple Coulomb scattering on accuracy of muon transmission imaging of small-scale matter. Acta Physica Sinica, 2023, 72(2): 021401. doi: 10.7498/aps.72.20221792
    [6] Su Ning, Liu Yuan-Yuan, Wang Li, Cheng Jian-Ping. Muon radiography simulation for underground palace of Qinshihuang Mausoleum. Acta Physica Sinica, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [7] Huo Yong-Gang, Yan Jiang-Yu, Zhang Quan-Hu. Image quality evaluation of multimodal imaging of muon. Acta Physica Sinica, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [8] Image Quality Evaluation of Multi-modal Imaging of Muon. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211083
    [9] Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng. Resonant Multi-phonon Raman scattering of black phosphorus. Acta Physica Sinica, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [10] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [11] Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Physica Sinica, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [12] Zhang Mei, Zhang Xian-Peng, Li Kui-Nian, Sheng Liang, Yuan Yuan, Song Chao-Hui, Li Yang. Angular resolution of a neutron scatter imaging system. Acta Physica Sinica, 2015, 64(4): 042801. doi: 10.7498/aps.64.042801
    [13] Jiang Huai, Han Min, Zhao Hui-Chang, Zhang Shu-Ning. An imaging algorithm for missile-borne spotlight SAR based on subband compensation. Acta Physica Sinica, 2014, 63(19): 198404. doi: 10.7498/aps.63.198404
    [14] Lei Cheng-Xin, Feng Dong-Tai, Wu Zhen-Sen. Influence of impurity on Mueller matrices of randomly distributed cluster agglomerates. Acta Physica Sinica, 2011, 60(11): 115202. doi: 10.7498/aps.60.115202
    [15] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Scattering channel in focus imaging of two-dimensional phononic crystal panel. Acta Physica Sinica, 2010, 59(1): 381-386. doi: 10.7498/aps.59.381
    [16] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [17] Lei Cheng-Xin, Zhang Hua-Fu, Liu Han-Fa. Numerical calculation of Mueller matrices of randomly distributed soot cluster agglomerates. Acta Physica Sinica, 2009, 58(10): 7168-7175. doi: 10.7498/aps.58.7168
    [18] FAN XI-QING, LIU YAN-ZHANG, WANG HUAI-SHENG, LIU FU-SUI. SUPERCONDUCTIVITY THEORY OF THE ELECTRON-MANY PHONONS COUPLINGS. Acta Physica Sinica, 1989, 38(1): 53-59. doi: 10.7498/aps.38.53
    [19] LIU FU-SUI, FAN XI-QING, LIU YAN-ZHANC, WANG HUAI-SHENG, RUAN YING-CHAO. EFFECT OF ELECTRON-MANY PHONON INTERACTION ON SCATTERING TIME. Acta Physica Sinica, 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [20] ZHANG YU-AI, JIANG DE-SHENG, XU ZHEN-JIA. MULTIPHONON ABSORPTION IN InP. Acta Physica Sinica, 1986, 35(7): 905-913. doi: 10.7498/aps.35.905
Metrics
  • Abstract views:  4679
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2021
  • Accepted Date:  23 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回