-
Molecular dynamics simulations of polyimide/copper-nanoparticle composites are implemented to calculate the morphological structures, thermodynamic and mechanical properties, and to investigate their relationships with the nanoparticle dimension and simulation temperature. The results demonstrate that polyimide/copper-nanoparticle composites are of isotropic amorphous structures, in which the copper nanoparticles combine with polyimide matrix due to van der Waals effect and multi-layers of atoms on nanoparticle surface change into amorphous configurations, forming interface layers between them. The interface regions shrink and expand respectively with increased nanoparticle dimension and temperature. The polyimide/copper-nanoparticle composites exhibit the explicit increase of isometric heat capacity with larger nanoparticle dimension in moderated temperature dependence, resulting in lower heat capacities at relatively low temperature for nanocomposites with relatively small nanoparticle size, compared with polyimide system. The thermal pressure coefficients of polyimide/copper-nanoparticle composites are distinctly higher than those of polyimide system, and increase substantially with enlarged nanoparticle dimension and reduce slightly with elevated temperature. The thermodynamic properties of polyimide/copper-nanoparticle composites manifest obvious scale-effect and distinctly higher temperature stability than polyimide system. The mechanical properties of polyimide/copper-nanoparticle composites represent isotropic elastic constant tensors with distinctly lower Young modulus and Poisson ratio than those of polyimide system, which decrease and increase respectively with increasing simulation temperature, exactly contrary to polyimide system and with substantially higher temperature stability of Young modulus. The composites with larger nanoparticle dimension exhibit considerably higher Poisson ratio with slight change of Young modulus, indicating the remarkably different mechanical properties of new nanocomposites with Cu nanoparticle filler.
-
Keywords:
- molecular dynamics simulation /
- polymer nanocomposite /
- polyimide /
- nanoparticle
[1] Stevens G C 2005 J. Phys. D 38 174
[2] Borjanovic V, Bistricic L, Mikac L, McGuire G E, Zamboni I, Jaksic M, Shenderova O 2012 J. Vac. Sci. Technol. B 30 041803
[3] Tanaka M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K 2008 Trans. IEEE DEI 15 1224
[4] Raetzke S, Kindersberger J 2006 IEEJ Trans. Fundam. Mater. 126 1044
[5] Smith R C, Liang C, Landry M, Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 187
[6] Fukushima K, Takahashi H, Takezawa Y, Kawahira T, Itoh M, Kanai J 2006 IEEJ Trans. Fundam. Mater. 126 1167
[7] Tanka T, Ohki Y, Ochi M, Harada M, Imai T 2008 Trans. IEEE DEI 15 81
[8] Lewis T J 2004 IEEE Int. Conf. Solid Dielectr. 2 792
[9] Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 1
[10] Nelson J K, Hu Y 2005 J. Phys. D 38 213
[11] Tewari A, Gokhale A M 2005 Mater. Sci. Eng. A 396 22
[12] Dissado L A, Fothergill J C 2004 Trans. IEEE DEI 11 737
[13] Tanaka T, Montannari G C, Mlhaupt R 2004 Trans. IEEE DEI 11 763
[14] Starr F, Schroder T, Glotzer S 2001 Phys. Rev. E 64 021802
[15] Smith G, Bedrov D, Li L, Byutner O 2002 J. Chem. Phys. 117 9478
[16] Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348
[17] Zeng Q H, Yu A B, Lu G Q 2008 Prog. Polym. Sci. 33 191
[18] Rigby D, Roe R J 1987 J. Chem. Phys. 87 7285
[19] Rigby D, Roe R J 1988 J. Chem. Phys. 89 5280
[20] Wilson E B, Decius J C, Cross P C 1980 Molecular Vibrations (New York: Dover)
[21] Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1
-
[1] Stevens G C 2005 J. Phys. D 38 174
[2] Borjanovic V, Bistricic L, Mikac L, McGuire G E, Zamboni I, Jaksic M, Shenderova O 2012 J. Vac. Sci. Technol. B 30 041803
[3] Tanaka M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K 2008 Trans. IEEE DEI 15 1224
[4] Raetzke S, Kindersberger J 2006 IEEJ Trans. Fundam. Mater. 126 1044
[5] Smith R C, Liang C, Landry M, Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 187
[6] Fukushima K, Takahashi H, Takezawa Y, Kawahira T, Itoh M, Kanai J 2006 IEEJ Trans. Fundam. Mater. 126 1167
[7] Tanka T, Ohki Y, Ochi M, Harada M, Imai T 2008 Trans. IEEE DEI 15 81
[8] Lewis T J 2004 IEEE Int. Conf. Solid Dielectr. 2 792
[9] Nelson J K, Schadler L S 2008 Trans. IEEE DEI 15 1
[10] Nelson J K, Hu Y 2005 J. Phys. D 38 213
[11] Tewari A, Gokhale A M 2005 Mater. Sci. Eng. A 396 22
[12] Dissado L A, Fothergill J C 2004 Trans. IEEE DEI 11 737
[13] Tanaka T, Montannari G C, Mlhaupt R 2004 Trans. IEEE DEI 11 763
[14] Starr F, Schroder T, Glotzer S 2001 Phys. Rev. E 64 021802
[15] Smith G, Bedrov D, Li L, Byutner O 2002 J. Chem. Phys. 117 9478
[16] Adnan A, Sun C T, Mahfuz H 2007 Compos. Sci. Technol. 67 348
[17] Zeng Q H, Yu A B, Lu G Q 2008 Prog. Polym. Sci. 33 191
[18] Rigby D, Roe R J 1987 J. Chem. Phys. 87 7285
[19] Rigby D, Roe R J 1988 J. Chem. Phys. 89 5280
[20] Wilson E B, Decius J C, Cross P C 1980 Molecular Vibrations (New York: Dover)
[21] Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1
Catalog
Metrics
- Abstract views: 7547
- PDF Downloads: 1488
- Cited By: 0