-
In nanosystems, the metallic nanowires are subjected to significant and cyclic bending deformation upon being integrated into stretchable and flexible nanoelectronic devices. The reliability and service life of these nanodevices depend fundamentally on the bending mechanical properties of the metallic nanowires that serve as the critical components. An in-depth understanding of the deformation behavior of the metallic nanowires under bending is not only essential but also imperative for designing and manufacturing high-performance nanodevices. To explore the mechanism of the bending plasticity of the metallic nanowire, the bending deformations of B2-FeAl alloy nanowires with various crystallographic orientations, sizes and cross-sectional shapes are investigated by using molecular dynamics simulation. The results show that the bending behavior of the B2-FeAl alloy nanowires is dependent on neither their size nor cross-sectional shape of the nanowire, but it is highly sensitive to its axial orientation. Specifically, both $\left\langle {111} \right\rangle $- and $\left\langle {110} \right\rangle $-oriented nanowires are generated through dislocation nucleation during bending, with the $\left\langle {111} \right\rangle $-oriented nanowires failling shortly after yielding due to brittle fracture, while the $\left\langle {110} \right\rangle $-oriented nanowires exhibit good ductility due to uniform plastic flow caused by continuous nucleation and stable motion of dislocations. Unlike the aforementioned two nanowires, the bending plasticity of the $\left\langle {001} \right\rangle $-oriented nanowire is mediated by the stress-induced transition from B2 phase to L10 phase, which leads to excellent ductility and higher fracture strain. The orientation dependence of bending deformation can be understood by considering the Schmid factor. Moreover, the plastically bent nanowires with $\left\langle {110} \right\rangle $ and $\left\langle {001} \right\rangle $ orientation are able to recover to their original shape upon unloading, particularly, the plastic deformation in the $\left\langle {001} \right\rangle $-oriented nanowire is recoverable completely via reverse transformation from L10 to B2 structures, exhibiting superelasticity. This work elucidates the deformation mechanism of the B2-FeAl alloy nanowires subjected to bending loads, which provides a crucial insight for designing and optimizing flexible and stretchable nanodevices based on metallic nanowires.
-
Keywords:
- B2-FeAl alloy nanowire /
- bending deformation /
- dislocation density /
- molecular dynamics simulation
-
图 3 $\left\langle {111} \right\rangle $取向FeAl合金纳米线弯曲变形在d = 0.000 nm (a), 3.585 nm (b), 3.660 nm (c)和3.725 nm (d)时的原子构型, 图中颜色表征晶体结构, 其中蓝色表示BCC结构, 绿色表示FCC结构以及白色表示未知结构
Figure 3. Atomic configurations of the $\left\langle {111} \right\rangle $-oriented FeAl alloy nanowire upon bending deformation at d = 0.000 nm (a), 3.585 nm (b), 3.660 nm (c) and 3.725 nm (d), where colors denote the different local crystal structures: blue-BCC, green-FCC and white-unknown.
图 5 $\left\langle {110} \right\rangle $取向FeAl合金纳米线弯曲变形在d = 3.300 nm (a), 4.500 nm (b), 6.000 nm (c), 8.900 nm (d)和9.300 nm (e)时的原子构型, 图中颜色表征晶体结构, 其中, 蓝色表示BCC结构, 绿色表示FCC结构, 红色表示HCP结构以及白色表示未知结构; (f) d = 9.300 nm时纳米线在1860 ps时的应变分布图
Figure 5. Atomic configurations of the $\left\langle {110} \right\rangle $-oriented FeAl alloy nanowire upon bending deformation at d = 3.300 nm (a), 4.500 nm (b), 6.000 nm (c), 8.900 nm (d) and 9.300 nm (e) , where colors denote the different local crystal structures: blue-BCC, green-FCC, red-HCP and white-unknown; strain distribution within the nanowire at 1860 ps and d = 9.300 nm, where atoms are colored by their local shear strain (f).
图 7 $\left\langle {001} \right\rangle $取向FeAl合金纳米线弯曲变形在d = 4.200 nm (a), 6.000 nm (b), 8.000 nm (c), 9.440 nm (d) 和 9.540 nm (e)时的原子构型, 图中颜色表征晶体结构, 其中, 蓝色表示BCC结构, 绿色表示FCC结构, 红色表示HCP结构以及白色表示未知结构; (f) d = 9.540 nm时纳米线在1908 ps时的应变分布图
Figure 7. Atomic configurations of the $\left\langle {001} \right\rangle $-oriented FeAl alloy nanowire upon bending deformation at d = 4.200 nm (a), 6.000 nm (b), 8.000 nm (c), 9.440 nm (d) and 9.540 nm (e), where colors denote the different local crystal structures: blue-BCC, green-FCC, red-HCP and white-unknown; strain distribution within the nanowire at 1908 ps and d = 9.540 nm, where atoms are colored by their local shear strain(f).
图 8 $\left\langle {110} \right\rangle $取向FeAl纳米线弯曲形变加载和卸载过程的F-d响应曲线(a)及卸载过程各阶段的原子构型(b); $\left\langle {001} \right\rangle $取向FeAl纳米线弯曲形变加载和卸载过程的F-d响应曲线(c)及卸载过程各阶段的原子构型(d)
Figure 8. F-d curves of the $\left\langle {110} \right\rangle $-oriented FeAl alloy nanowire under loading and unloading (a) in addition to the atomic configurations during unloading (b); F-d curves of the $\left\langle {001} \right\rangle $-oriented FeAl alloy nanowire under loading and unloading (c) in addition to the atomic configurations during unloading (d).
表 1 FeAl合金纳米线初始模型的晶体学取向特征
Table 1. Crystallographic orientation of the FeAl alloy nanowires.
Orientation X Y Z $\left\langle {111} \right\rangle $ [111] $ [1\overline 1 0] $ $ [11\overline 2 ] $ $\left\langle {001} \right\rangle $ [001] $ [1\overline 1 0] $ [110] $\left\langle {110} \right\rangle $ [110] $ [1\overline 1 0] $ [001] -
[1] Wu Y, Xiang J, Yang C, Lu W, Lieber C M 2004 Nature 430 61Google Scholar
[2] Foss C A, Hornyak G L, Stockert J A, Martin C R 1992 J. Phys. Chem. 96 7497Google Scholar
[3] Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Ko S H 2012 Adv. Mater. 24 3326Google Scholar
[4] Kondo Y, Takayanagi K 1997 Phys. Rev. Lett. 79 3455Google Scholar
[5] Huo Z Y, Tsung C K, Huang W Y, Zhang X F, Yang P D 2008 Nano Lett. 8 2041Google Scholar
[6] Marszalek P E, Greenleaf W J, Li H, Oberhauser A F, Fernandez J M 2000 Proc. Natl. Acad. Sci. U. S. A. 97 6282Google Scholar
[7] Wang J W, Zeng Z, Weinberger C R, Zhang Z, Zhu T, Mao S X 2015 Nat. Mater. 14 594Google Scholar
[8] Yue Y H, Liu P, Deng Q S, Ma E, Zhang Z, Han X D 2012 Nano Lett. 12 4045Google Scholar
[9] Seo J H, Yoo Y, Park N Y, Yoon S W, Lee H, Han S, Lee S W, Seong T Y, Lee S C, Lee K B, Cha P R, Park H S, Kim B, Ahn J P 2011 Nano Lett. 11 3499Google Scholar
[10] Cao G, Wang J W, Du K, Wang X L, Li J X, Zhang Z, Mao S X 2018 Adv. Funct. Mater. 28 1805258Google Scholar
[11] Hagen A B, Snartland B D, Thaulow C 2017 Acta Mater. 129 398Google Scholar
[12] Wang Q N, Wang J W, Li J X, Zhang Z, Mao S X 2018 Sci. Adv. 4 1
[13] Wu B, Heidelberg A, Boland J J 2005 Nat. Mater. 4 525Google Scholar
[14] Hu T, Ma K, Topping T D, Jiang L, Zhang D, Mukherjee A K, Schoenung J M, Lavernia E J 2016 Scr. Mater. 113 35Google Scholar
[15] Wei S Y, Wang Q N, Wei H, Wang J W 2019 Mater. Res. Lett. 7 210Google Scholar
[16] Sun S D, Li D W, Yang C P, Fu L B, Kong D L, Lu Y, Guo Y Z, Liu D M, Guan P F, Zhang Z, Chen J H, Ming W Q, Wang L H, Han X D 2022 Phys. Rev. Lett. 128 015701Google Scholar
[17] Olsson P A T, Melin S, Persson C 2007 Phys. Rev. B 76 1
[18] McDowell M T, Leach A M, Gall K 2008 Model. Simul. Mater. Sci. Eng. 16 045003Google Scholar
[19] Zhu W P, Wang H T, Yang W 2012 Acta Mater. 60 7112Google Scholar
[20] Deb Nath S K 2014 Comput. Mater. Sci. 87 138Google Scholar
[21] Zhang S B 2014 Comput. Mater. Sci. 95 53Google Scholar
[22] Nöhring W G, Möller J J, Xie Z, Bitzek E 2016 Extrem. Mech. Lett. 8 140Google Scholar
[23] Zhan H F, Gu Y T 2012 J. Appl. Phys. 111 084305Google Scholar
[24] Yang Y, Li S Z, Ding X D, Sun J, Salje E K H 2016 Adv. Funct. Mater. 26 760Google Scholar
[25] Yang Y, Li S Z, Ding X D, Sun J 2021 Comput. Mater. Sci. 188 110128Google Scholar
[26] Mendelev M I, Srolovitz D J, Ackland G J, Han S 2005 J. Mater. Res. 20 208Google Scholar
[27] Yan J X, Zhang Z J, Li K Q, Xia Z Y, Yang J B, Zhang Z F 2020 J. Alloys Compd. 815 152362Google Scholar
[28] Dong S, Liu X Y, Zhou C 2021 J. Mater. Sci. 56 17080Google Scholar
[29] Timoshenko S P, Gere J M 1961 Theory of Elastic Stability (New York: McGraw-Hill)p1
[30] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[31] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[32] Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279Google Scholar
[33] Stukowski A, Albe K 2010 Model. Simul. Mater. Sci. Eng. 18 025016Google Scholar
[34] Shimizu F, Ogata S, Li J 2007 Mater. Trans. 48 2923Google Scholar
[35] 陈煜, 姚正军, 张平则, 魏东博, 罗西希, 韩培德 2014 稀有金属材料与工程 43 2112
Chen Y, Yao Z J, Zhang P Z, Wei D B, Luo X X, Han P D 2014 Rare Metal. Mat. Eng. 43 2112
[36] Wang Z, Shi X, Yang X S, He W, Shi S Q, Ma X 2021 J. Mater. Sci. 56 2275Google Scholar
[37] Horton J A, Ohr S M 1982 J. Mater. Sci. 17 3140Google Scholar
[38] Colorado H A, Navarro A, Prikhodko S V., Yang J M, Ghoniem N, Gupta V 2013 J. Appl. Phys. 114 233510Google Scholar
[39] Hwang B, Kim T, Han S M 2016 Extrem. Mech. Lett. 8 266Google Scholar
[40] Nye J F 1953 Acta Metall. 1 153Google Scholar
[41] Ashby M F 1969 Philos. Mag. 21 37
[42] Greer J R, Nix W D 2006 Phys. Rev. B 73 245410Google Scholar
[43] Shan Z W, Mishra R K, Syed Asif S A, Warren O L, Minor A M 2008 Nat. Mater. 7 115Google Scholar
[44] Norfleet D M, Dimiduk D M, Polasik S J, Uchic M D, Mills M J 2008 Acta Mater. 56 2988Google Scholar
[45] Lee S W, Han S M, Nix W D 2009 Acta Mater. 57 4404Google Scholar
[46] Rodriguez-Nieva J F, Ruestes C J, Tang Y, Bringa E M 2014 Acta Mater. 80 67Google Scholar
[47] Santhapuram R R, Spearot D E, Nair A K 2020 J. Mater. Sci. 55 16990Google Scholar
[48] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞 2023 物理学报 72 136801Google Scholar
Yuan Y K, Chen Q, Gao T H, Liang Y C, Xie Q, Tian Z A, Zheng Q, Lu F 2023 Acta Phys. Sin. 72 136801Google Scholar
[49] Saitoh K, Liu W K 2009 Comput. Mater. Sci. 46 531Google Scholar
[50] Zhang Z, Ding X D, Sun J, Suzuki T, Lookman T, Otsuka K, Ren X B 2013 Phys. Rev. Lett. 111 145701Google Scholar
[51] Mirzaeifar R, Gall K, Zhu T, Yavari A, Desroches R 2014 J. Appl. Phys. 115 194307Google Scholar
[52] Morrison K R, Cherukara M J, Kim H, Strachan A 2015 Acta Mater. 95 37Google Scholar
[53] Ahadi A, Sun Q 2013 Appl. Phys. Lett. 103 021902Google Scholar
[54] Ahadi A, Sun Q 2014 Acta Mater. 76 186Google Scholar
Metrics
- Abstract views: 276
- PDF Downloads: 5
- Cited By: 0