-
In nanosystems, the metallic nanowires are subjected to significant and cyclic bending deformation upon integration into stretchable and flexible nanoelectronic devices. The reliability and service life of these nanodevices depend fundamentally on the bending mechanical properties of the metallic nanowires that serve as the critical components. A deep understanding of the deformation behavior of the metallic nanowires under bending is not only essential but also imperative for design and manufacture of high-performance nanodevices. To explore the mechanism underlying the bending plasticity of the metallic nanowire, we have conducted a study on the bending deformation of B2-FeAl alloy nanowires with various crystallographic orientations, sizes and cross-sectional shapes by using molecular dynamics simulation. Our results show that the bending behavior of the B2-FeAl alloy nanowires is independent of the size and cross-sectional shape of the nanowire, but it is highly sensitive to its axial orientation. Specifically, both <111>- and <110>-oriented nanowires yield by dislocation nucleation upon bending, in which the <111>-oriented nanowire fails by brittle fracture soon after yielding, while the <110>-oriented nanowire exhibits good ductility due to homogeneous plastic flow raised by continuous nucleation and steady motion of dislocations. In contrast to the aforementioned two nanowires, the bending plasticity of the <001>-oriented nanowire is mediated by stress-induced transformation from B2 to L10 phases, which leads to excellent ductility and higher fracture strain. The orientation dependence of bending deformation can be understood by considering the Schmid factor. Moreover, the plastically bent nanowires with <110> and <001> orientations are able to recover to their original shape upon unloading, particularly, the plastic deformation in the <001>-oriented nanowire is recoverable completely via reverse transformation from L10 to B2 structures, exhibiting superelasticity. This work elucidates the deformation mechanism of the B2-FeAl alloy nanowire subjected to bending load, which provides a crucial insight for the design and optimization of flexible and stretchable nanodevices based on metallic nanowires.
-
Keywords:
- B2-FeAl alloy nanowire /
- bending deformation /
- dislocation density /
- molecular dynamics simulation
-
[1] Wu Y, Xiang J, Yang C, Lu W, Lieber C M 2004Nature 43061
[2] Foss C A, Hornyak G L, Stockert J A, Martin C R 1992J. Phys. Chem. 96 7497
[3] Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Ko S H 2012Adv. Mater. 24 3326
[4] Kondo Y, Takayanagi K 1997Phys. Rev. Lett. 79 3455
[5] Huo Z, Tsung C kuang, Huang W, Zhang X, Yang P 2008Nano Lett. 8 2041
[6] Marszalek P E, Greenleaf W J, Li H, Oberhauser A F, Fernandez J M 2000Proc. Natl. Acad. Sci. U. S. A. 97 6282
[7] Wang J, Zeng Z, Weinberger C R, Zhang Z, Zhu T, Mao S X 2015Nat. Mater. 14 594
[8] Yue Y, Liu P, Deng Q, Ma E, Zhang Z, Han X 2012Nano Lett. 12 4045
[9] Seo J H, Yoo Y, Park N Y, Yoon S W, Lee H, Han S, Lee S W, Seong T Y, Lee S C, Lee K B, Cha P R, Park H S, Kim B, Ahn J P 2011Nano Lett. 11 3499
[10] Cao G, Wang J, Du K, Wang X, Li J, Zhang Z, Mao S X 2018Adv. Funct. Mater. 28 1805258
[11] Hagen A B, Snartland B D, Thaulow C. 2017 Acta Mater. 129 398
[12] Wang Q, Wang J, Li J, Zhang Z, Mao S X 2018 Sci. Adv. 4 1
[13] Wu B, Heidelberg A, Boland J J. 2005Nat. Mater.4 525
[14] Hu T, Ma K, Topping T D, Jiang L, Zhang D, Mukherjee A K, Schoenung J M, Lavernia E J 2016Scr. Mater.113 35
[15] Wei S, Wang Q, Wei H, Wang J 2019Mater. Res. Lett. 7 210
[16] Sun S, Li D, Yang C, Fu L, Kong D, Lu Y, Guo Y, Liu D, Guan P, Zhang Z, Chen J, Ming W, Wang L, Han X 2022Phys. Rev. Lett. 128 15701
[17] Olsson P A T, Melin S, Persson C. 2007Phys. Rev. B 76 1
[18] McDowell M T, Leach A M, Gall K. 2008Model. Simul. Mater. Sci. Eng. 16 045003
[19] Zhu W, Wang H, Yang W. 2012Acta Mater. 60 7112
[20] Deb Nath S K 2014Comput. Mater. Sci. 87 138
[21] Zhang S B. 2014Comput. Mater. Sci. 95 53
[22] Nöhring W G, Möller J J, Xie Z, Bitzek E 2016Extrem. Mech. Lett. 8 140
[23] Zhan H F, Gu Y T. 2012J. Appl. Phys. 111 084305
[24] Yang Y, Li S, Ding X, Sun J, Salje E K H 2016Adv. Funct. Mater. 26 760
[25] Yang Y, Li S, Ding X, Sun J 2021Comput. Mater. Sci. 188 110128
[26] Mendelev M I, Srolovitz D J, Ackland G J, Han S 2005J. Mater. Res. 20 208
[27] Yan J X, Zhang Z J, Li K Q, Xia Z Y, Yang J B, Zhang Z F 2020J. Alloys Compd. 815 152362
[28] Dong S, Liu X Y, Zhou C 2021J. Mater. Sci. 56 17080
[29] Timoshenko S P, Gere J M 1961Theory of Elastic Stability (New York: McGraw-Hill) p1
[30] Plimpton S. 1995J. Comput. Phys. 117 1
[31] Stukowski A. 2010Model. Simul.Mater.Sci. Eng. 18 015012
[32] Faken D, Jonsson H. 1994Comput. Mater. Sci. 2 279
[33] Stukowski A, Albe K. 2010Model. Simul.Mater.Sci. Eng. 18 025016
[34] Shimizu F, Ogata S, Li J. 2007Mater. Trans. 48 2923
[35] Chen Y, Yao Z J, Zhang P Z, Wei D B, Luo X X, Han P D 2014Rare. Metal. Mat. Eng. 43 2112(in Chinese) [陈煜, 姚正军, 张平则, 魏东博, 罗西希, 韩培德2014稀有金属材料与工程43 2112]
[36] Wang Z, Shi X, Yang X S, He W, Shi S Q, Ma X 2021J. Mater. Sci. 56 2275
[37] Horton J A, Ohr S M. 1982J. Mater. Sci. 17 3140
[38] Colorado H A, Navarro A, Prikhodko S V., Yang J M, Ghoniem N, Gupta V 2013J. Appl. Phys. 114 233510
[39] Hwang B, Kim T, Han S M. 2016Extrem. Mech. Lett. 8 266
[40] Nye J F. 1953Acta Metall. 1 153
[41] Ashby M F. 1969Philos. Mag. 21 37
[42] Greer J R, Nix W D. 2006Phys. Rev. B. 73 1
[43] Shan Z W, Mishra R K, Syed Asif S A, Warren O L, Minor A M 2008Nat. Mater. 7 115
[44] Norfleet D M, Dimiduk D M, Polasik S J, Uchic M D, Mills M J 2008Acta Mater. 56 2988
[45] Lee S W, Han S M, Nix W D. 2009Acta Mater. 57 4404
[46] Rodriguez-Nieva J F, Ruestes C J, Tang Y, Bringa E M 2014Acta Mater. 80 67
[47] Santhapuram R R, Spearot D E, Nair A K. 2020J. Mater. Sci. 55 16990
[48] Yuan Y K, Chen Q, Gao T H, Liang Y C, Xie Q, Tian Z A, Zheng Q, Lu F 2023Acta Phys. Sin. 72 1(in Chinese) [袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞2023物理学报72 1]
[49] Saitoh K ichi, Liu W K. 2009Comput. Mater. Sci. 46 531
[50] Zhang Z, Ding X, Sun J, Suzuki T, Lookman T, Otsuka K, Ren X 2013Phys. Rev. Lett. 111 1
[51] Mirzaeifar R, Gall K, Zhu T, Yavari A, Desroches R 2014J. Appl. Phys. 115 1
[52] Morrison K R, Cherukara M J, Kim H, Strachan A 2015Acta Mater. 95 37
[53] Ahadi A, Sun Q 2013Appl. Phys. Lett. 103 021902
[54] Ahadi A, Sun Q 2014Acta Mater. 76 186
Metrics
- Abstract views: 18
- PDF Downloads: 1
- Cited By: 0